|
import cv2 |
|
from keras.models import model_from_json |
|
import numpy as np |
|
|
|
json_file = open("facialemotion.json", "r") |
|
model_json = json_file.read() |
|
json_file.close() |
|
model = model_from_json(model_json) |
|
|
|
model.load_weights("facialemotionmodel.h5") |
|
haar_file=cv2.data.haarcascades + 'haarcascade_frontalface_default.xml' |
|
face_cascade=cv2.CascadeClassifier(haar_file) |
|
|
|
def extract_features(image): |
|
feature = np.array(image) |
|
feature = feature.reshape(1,48,48,1) |
|
return feature/255.0 |
|
|
|
webcam=cv2.VideoCapture(0) |
|
labels = {0 : 'angry', 1 : 'disgust', 2 : 'fear', 3 : 'happy', 4 : 'neutral', 5 : 'sad', 6 : 'surprise'} |
|
while True: |
|
i,im=webcam.read() |
|
gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) |
|
faces=face_cascade.detectMultiScale(im,1.3,5) |
|
try: |
|
for (p,q,r,s) in faces: |
|
image = gray[q:q+s,p:p+r] |
|
cv2.rectangle(im,(p,q),(p+r,q+s),(255,0,0),2) |
|
image = cv2.resize(image,(48,48)) |
|
img = extract_features(image) |
|
pred = model.predict(img) |
|
prediction_label = labels[pred.argmax()] |
|
|
|
|
|
cv2.putText(im, '% s' %(prediction_label), (p-10, q-10),cv2.FONT_HERSHEY_COMPLEX_SMALL,2, (0,0,255)) |
|
cv2.imshow("Output",im) |
|
cv2.waitKey(27) |
|
except cv2.error: |
|
pass |