Haoran Wei commited on
Commit
b2acddb
·
verified ·
1 Parent(s): ab38505

Upload 9 files

Browse files
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/hypertext/xpkong/newcode/checkpoints/whr-vary-qwen-sft-1-8-1-9-3/",
3
+ "architectures": [
4
+ "MMGPTQwenForCausalLM"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": false,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": false,
14
+ "fp32": false,
15
+ "freeze_vision_tower": false,
16
+ "hidden_size": 2048,
17
+ "im_end_token": 151858,
18
+ "im_patch_token": 151859,
19
+ "im_start_token": 151857,
20
+ "image_token_len": 256,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 11008,
23
+ "kv_channels": 128,
24
+ "layer_norm_epsilon": 1e-06,
25
+ "max_position_embeddings": 8192,
26
+ "model_type": "mmgpt",
27
+ "no_bias": true,
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "onnx_safe": null,
31
+ "rotary_emb_base": 10000,
32
+ "rotary_pct": 1.0,
33
+ "scale_attn_weights": true,
34
+ "seq_length": 8192,
35
+ "tie_word_embeddings": false,
36
+ "tokenizer_class": "QWenTokenizer",
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.32.1",
39
+ "use_cache": true,
40
+ "use_dynamic_ntk": true,
41
+ "use_flash_attn": "auto",
42
+ "use_im_start_end": true,
43
+ "use_logn_attn": true,
44
+ "vision_select_layer": -2,
45
+ "vision_tower": "/mnt/host0/vit-large-patch14",
46
+ "vocab_size": 151860
47
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "max_window_size": 6144,
7
+ "pad_token_id": 151643,
8
+ "repetition_penalty": 1.1,
9
+ "top_k": 0,
10
+ "top_p": 0.8,
11
+ "transformers_version": "4.32.1"
12
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbb621547e4231108139d53ca94c401e71cf7767f80931da1beeb6ddd5b3f129
3
+ size 4474993293
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ SPECIAL_TOKENS = (
31
+ ENDOFTEXT,
32
+ IMSTART,
33
+ IMEND,
34
+ ) + EXTRAS
35
+
36
+
37
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
38
+ with open(tiktoken_bpe_file, "rb") as f:
39
+ contents = f.read()
40
+ return {
41
+ base64.b64decode(token): int(rank)
42
+ for token, rank in (line.split() for line in contents.splitlines() if line)
43
+ }
44
+
45
+ class QWenTokenizer(PreTrainedTokenizer):
46
+ """QWen tokenizer."""
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+
50
+ def __init__(
51
+ self,
52
+ vocab_file,
53
+ errors="replace",
54
+ image_start_tag='<img>',
55
+ image_end_tag='</img>',
56
+ image_pad_tag='<imgpad>',
57
+ ref_start_tag='<ref>',
58
+ ref_end_tag='</ref>',
59
+ box_start_tag='<box>',
60
+ box_end_tag='</box>',
61
+ quad_start_tag='<quad>',
62
+ quad_end_tag='</quad>',
63
+ **kwargs,
64
+ ):
65
+ super().__init__(**kwargs)
66
+
67
+ self.image_start_tag = image_start_tag
68
+ self.image_end_tag = image_end_tag
69
+ self.image_pad_tag = image_pad_tag
70
+ self.ref_start_tag = ref_start_tag
71
+ self.ref_end_tag = ref_end_tag
72
+ self.box_start_tag = box_start_tag
73
+ self.box_end_tag = box_end_tag
74
+ self.quad_start_tag = quad_start_tag
75
+ self.quad_end_tag = quad_end_tag
76
+ self.IMAGE_ST = (
77
+ ref_start_tag, ref_end_tag,
78
+ box_start_tag, box_end_tag,
79
+ quad_start_tag, quad_end_tag,
80
+ image_start_tag, image_end_tag,
81
+ image_pad_tag
82
+ )
83
+
84
+ self.errors = errors # how to handle errors in decoding
85
+
86
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
87
+ self.special_tokens = {
88
+ token: index
89
+ for index, token in enumerate(
90
+ SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
91
+ )
92
+ }
93
+
94
+ self.img_start_id = self.special_tokens[self.image_start_tag]
95
+ self.img_end_id = self.special_tokens[self.image_end_tag]
96
+ self.img_pad_id = self.special_tokens[self.image_pad_tag]
97
+ self.ref_start_id = self.special_tokens[self.ref_start_tag]
98
+ self.ref_end_id = self.special_tokens[self.ref_end_tag]
99
+ self.box_start_id = self.special_tokens[self.box_start_tag]
100
+ self.box_end_id = self.special_tokens[self.box_end_tag]
101
+ self.quad_start_id = self.special_tokens[self.quad_start_tag]
102
+ self.quad_end_id = self.special_tokens[self.quad_end_tag]
103
+
104
+ enc = tiktoken.Encoding(
105
+ "Qwen",
106
+ pat_str=PAT_STR,
107
+ mergeable_ranks=self.mergeable_ranks,
108
+ special_tokens=self.special_tokens,
109
+ )
110
+ assert (
111
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
112
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
113
+
114
+ self.decoder = {
115
+ v: k for k, v in self.mergeable_ranks.items()
116
+ } # type: dict[int, bytes|str]
117
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
118
+
119
+ self.tokenizer = enc # type: tiktoken.Encoding
120
+
121
+ self.eod_id = self.tokenizer.eot_token
122
+ self.im_start_id = self.special_tokens[IMSTART]
123
+ self.im_end_id = self.special_tokens[IMEND]
124
+
125
+ def __len__(self) -> int:
126
+ return self.tokenizer.n_vocab
127
+
128
+ def get_vocab(self) -> Dict[bytes, int]:
129
+ return self.mergeable_ranks
130
+
131
+ def convert_tokens_to_ids(
132
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
133
+ ) -> List[int]:
134
+ ids = []
135
+ if isinstance(tokens, (str, bytes)):
136
+ if tokens in self.special_tokens:
137
+ return self.special_tokens[tokens]
138
+ else:
139
+ return self.mergeable_ranks.get(tokens)
140
+ for token in tokens:
141
+ if token in self.special_tokens:
142
+ ids.append(self.special_tokens[token])
143
+ else:
144
+ ids.append(self.mergeable_ranks.get(token))
145
+ return ids
146
+
147
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
148
+ if not special_tokens and new_tokens:
149
+ raise ValueError('Adding regular tokens is not supported')
150
+ for token in new_tokens:
151
+ surface_form = token.content if isinstance(token, AddedToken) else token
152
+ if surface_form not in SPECIAL_TOKENS:
153
+ raise ValueError('Adding unknown special tokens is not supported')
154
+ return 0
155
+
156
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
157
+ """
158
+ Save only the vocabulary of the tokenizer (vocabulary).
159
+
160
+ Returns:
161
+ `Tuple(str)`: Paths to the files saved.
162
+ """
163
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
164
+ with open(file_path, "w", encoding="utf8") as w:
165
+ for k, v in self.mergeable_ranks.items():
166
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
167
+ w.write(line)
168
+ return (file_path,)
169
+
170
+ def tokenize(
171
+ self,
172
+ text: str,
173
+ allowed_special: Union[Set, str] = "all",
174
+ disallowed_special: Union[Collection, str] = (),
175
+ **kwargs,
176
+ ) -> List[Union[bytes, str]]:
177
+ """
178
+ Converts a string in a sequence of tokens.
179
+
180
+ Args:
181
+ text (`str`):
182
+ The sequence to be encoded.
183
+ allowed_special (`Literal["all"]` or `set`):
184
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
185
+ Default to "all".
186
+ disallowed_special (`Literal["all"]` or `Collection`):
187
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
188
+ Default to an empty tuple.
189
+
190
+ kwargs (additional keyword arguments, *optional*):
191
+ Will be passed to the underlying model specific encode method.
192
+
193
+ Returns:
194
+ `List[bytes|str]`: The list of tokens.
195
+ """
196
+ tokens = []
197
+ text = unicodedata.normalize("NFC", text)
198
+
199
+ # this implementation takes a detour: text -> token id -> token surface forms
200
+ for t in self.tokenizer.encode(
201
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
202
+ ):
203
+ tokens.append(self.decoder[t])
204
+ return tokens
205
+
206
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
207
+ """
208
+ Converts a sequence of tokens in a single string.
209
+ """
210
+ text = ""
211
+ temp = b""
212
+ for t in tokens:
213
+ if isinstance(t, str):
214
+ if temp:
215
+ text += temp.decode("utf-8", errors=self.errors)
216
+ temp = b""
217
+ text += t
218
+ elif isinstance(t, bytes):
219
+ temp += t
220
+ else:
221
+ raise TypeError("token should only be of type types or str")
222
+ if temp:
223
+ text += temp.decode("utf-8", errors=self.errors)
224
+ return text
225
+
226
+ @property
227
+ def vocab_size(self):
228
+ return self.tokenizer.n_vocab
229
+
230
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
231
+ """Converts an id to a token, special tokens included"""
232
+ if index in self.decoder:
233
+ return self.decoder[index]
234
+ raise ValueError("unknown ids")
235
+
236
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
237
+ """Converts a token to an id using the vocab, special tokens included"""
238
+ if token in self.special_tokens:
239
+ return self.special_tokens[token]
240
+ if token in self.mergeable_ranks:
241
+ return self.mergeable_ranks[token]
242
+ raise ValueError("unknown token")
243
+
244
+ def _tokenize(self, text: str, **kwargs):
245
+ """
246
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
247
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
248
+
249
+ Do NOT take care of added tokens.
250
+ """
251
+ raise NotImplementedError
252
+
253
+ def _decode(
254
+ self,
255
+ token_ids: Union[int, List[int]],
256
+ skip_special_tokens: bool = False,
257
+ errors: str = None,
258
+ **kwargs,
259
+ ) -> str:
260
+ if isinstance(token_ids, int):
261
+ token_ids = [token_ids]
262
+ if skip_special_tokens:
263
+ token_ids = [i for i in token_ids if i < self.eod_id]
264
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_qwen.QWenTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "clean_up_tokenization_spaces": true,
9
+ "model_max_length": 4096,
10
+ "padding_side": "right",
11
+ "tokenizer_class": "QWenTokenizer"
12
+ }
trainer_state.json ADDED
@@ -0,0 +1,2584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 426,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.5384615384615387e-06,
14
+ "loss": 0.92,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 3.0769230769230774e-06,
20
+ "loss": 0.9533,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 4.615384615384616e-06,
26
+ "loss": 0.9873,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 6.153846153846155e-06,
32
+ "loss": 0.9105,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 7.692307692307694e-06,
38
+ "loss": 0.9502,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 9.230769230769232e-06,
44
+ "loss": 0.9663,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 1.076923076923077e-05,
50
+ "loss": 0.9044,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1.230769230769231e-05,
56
+ "loss": 0.9281,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 1.3846153846153847e-05,
62
+ "loss": 0.8729,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 1.5384615384615387e-05,
68
+ "loss": 0.894,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 1.6923076923076924e-05,
74
+ "loss": 0.9235,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 1.8461538461538465e-05,
80
+ "loss": 0.905,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 2e-05,
86
+ "loss": 0.908,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1.9999710687264073e-05,
92
+ "loss": 0.9524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 1.999884276579666e-05,
98
+ "loss": 0.9495,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 1.9997396285817907e-05,
104
+ "loss": 0.8929,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 1.9995371331024835e-05,
110
+ "loss": 0.9357,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 1.999276801858648e-05,
116
+ "loss": 0.9182,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.9989586499137137e-05,
122
+ "loss": 0.9526,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 1.998582695676762e-05,
128
+ "loss": 0.9119,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 1.998148960901463e-05,
134
+ "loss": 0.9072,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 1.9976574706848154e-05,
140
+ "loss": 0.888,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.05,
145
+ "learning_rate": 1.9971082534656958e-05,
146
+ "loss": 0.9345,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 1.99650134102321e-05,
152
+ "loss": 0.954,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 1.995836768474859e-05,
158
+ "loss": 0.9353,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 1.9951145742745027e-05,
164
+ "loss": 0.8974,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 1.9943348002101374e-05,
170
+ "loss": 0.9084,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 1.9934974914014765e-05,
176
+ "loss": 0.9109,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 1.9926026962973407e-05,
182
+ "loss": 0.9312,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 1.9916504666728533e-05,
188
+ "loss": 0.8948,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 1.9906408576264468e-05,
194
+ "loss": 0.8773,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 1.9895739275766717e-05,
200
+ "loss": 0.9831,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 1.9884497382588185e-05,
206
+ "loss": 0.9739,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 1.9872683547213446e-05,
212
+ "loss": 0.9398,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 1.986029845322111e-05,
218
+ "loss": 0.8877,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.08,
223
+ "learning_rate": 1.9847342817244256e-05,
224
+ "loss": 0.8749,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 1.9833817388928987e-05,
230
+ "loss": 0.9456,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 1.9819722950891034e-05,
236
+ "loss": 0.9641,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 1.980506031867049e-05,
242
+ "loss": 0.8627,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.09,
247
+ "learning_rate": 1.9789830340684593e-05,
248
+ "loss": 0.941,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 1.9774033898178668e-05,
254
+ "loss": 0.9602,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 1.9757671905175118e-05,
260
+ "loss": 0.9361,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 1.974074530842053e-05,
266
+ "loss": 0.8819,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.1,
271
+ "learning_rate": 1.972325508733091e-05,
272
+ "loss": 0.9098,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 1.9705202253935004e-05,
278
+ "loss": 0.974,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 1.9686587852815733e-05,
284
+ "loss": 0.9917,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 1.9667412961049755e-05,
290
+ "loss": 0.9431,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.11,
295
+ "learning_rate": 1.9647678688145163e-05,
296
+ "loss": 0.8762,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 1.962738617597724e-05,
302
+ "loss": 0.8853,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 1.9606536598722435e-05,
308
+ "loss": 0.8557,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 1.95851311627904e-05,
314
+ "loss": 0.8813,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 1.956317110675417e-05,
320
+ "loss": 0.9625,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.12,
325
+ "learning_rate": 1.9540657701278536e-05,
326
+ "loss": 0.9091,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 1.9517592249046476e-05,
332
+ "loss": 0.9151,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 1.9493976084683814e-05,
338
+ "loss": 0.9429,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 1.946981057468197e-05,
344
+ "loss": 0.8978,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.13,
349
+ "learning_rate": 1.9445097117318915e-05,
350
+ "loss": 0.9288,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 1.9419837142578228e-05,
356
+ "loss": 0.9247,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 1.9394032112066405e-05,
362
+ "loss": 0.8868,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 1.9367683518928228e-05,
368
+ "loss": 0.9086,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.14,
373
+ "learning_rate": 1.9340792887760417e-05,
374
+ "loss": 0.8921,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 1.9313361774523387e-05,
380
+ "loss": 0.8934,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 1.928539176645122e-05,
386
+ "loss": 0.8898,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 1.925688448195983e-05,
392
+ "loss": 0.9609,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.15,
397
+ "learning_rate": 1.922784157055331e-05,
398
+ "loss": 0.931,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.15,
403
+ "learning_rate": 1.9198264712728494e-05,
404
+ "loss": 0.9022,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 1.9168155619877712e-05,
410
+ "loss": 0.8409,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 1.9137516034189768e-05,
416
+ "loss": 0.9554,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.16,
421
+ "learning_rate": 1.9106347728549134e-05,
422
+ "loss": 0.8817,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.16,
427
+ "learning_rate": 1.907465250643337e-05,
428
+ "loss": 0.9268,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 1.9042432201808757e-05,
434
+ "loss": 0.9427,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 1.900968867902419e-05,
440
+ "loss": 0.9137,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.17,
445
+ "learning_rate": 1.897642383270331e-05,
446
+ "loss": 0.8941,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.17,
451
+ "learning_rate": 1.8942639587634854e-05,
452
+ "loss": 0.8784,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 1.8908337898661287e-05,
458
+ "loss": 0.9041,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 1.8873520750565716e-05,
464
+ "loss": 0.8818,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 1.8838190157957013e-05,
470
+ "loss": 0.8648,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.18,
475
+ "learning_rate": 1.880234816515326e-05,
476
+ "loss": 0.9294,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 1.8765996846063456e-05,
482
+ "loss": 0.9423,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 1.8729138304067512e-05,
488
+ "loss": 0.9467,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.19,
493
+ "learning_rate": 1.8691774671894562e-05,
494
+ "loss": 0.8737,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.19,
499
+ "learning_rate": 1.8653908111499534e-05,
500
+ "loss": 0.8909,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.19,
505
+ "learning_rate": 1.8615540813938063e-05,
506
+ "loss": 0.912,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.2,
511
+ "learning_rate": 1.8576674999239713e-05,
512
+ "loss": 0.9153,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.2,
517
+ "learning_rate": 1.8537312916279526e-05,
518
+ "loss": 0.9053,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.2,
523
+ "learning_rate": 1.849745684264788e-05,
524
+ "loss": 0.9688,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.2,
529
+ "learning_rate": 1.845710908451872e-05,
530
+ "loss": 0.9658,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.21,
535
+ "learning_rate": 1.84162719765161e-05,
536
+ "loss": 0.9626,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.21,
541
+ "learning_rate": 1.8374947881579116e-05,
542
+ "loss": 0.9328,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.21,
547
+ "learning_rate": 1.833313919082515e-05,
548
+ "loss": 0.9245,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.21,
553
+ "learning_rate": 1.8290848323411554e-05,
554
+ "loss": 0.8959,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.22,
559
+ "learning_rate": 1.8248077726395634e-05,
560
+ "loss": 0.8694,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.22,
565
+ "learning_rate": 1.8204829874593083e-05,
566
+ "loss": 0.8948,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.22,
571
+ "learning_rate": 1.8161107270434757e-05,
572
+ "loss": 0.9032,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.22,
577
+ "learning_rate": 1.8116912443821912e-05,
578
+ "loss": 0.8311,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.23,
583
+ "learning_rate": 1.8072247951979785e-05,
584
+ "loss": 0.9178,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.23,
589
+ "learning_rate": 1.8027116379309637e-05,
590
+ "loss": 0.9193,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.23,
595
+ "learning_rate": 1.798152033723923e-05,
596
+ "loss": 0.8684,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.23,
601
+ "learning_rate": 1.7935462464071697e-05,
602
+ "loss": 0.8673,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.23,
607
+ "learning_rate": 1.7888945424832896e-05,
608
+ "loss": 0.8611,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.24,
613
+ "learning_rate": 1.78419719111172e-05,
614
+ "loss": 0.9236,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.24,
619
+ "learning_rate": 1.7794544640931773e-05,
620
+ "loss": 0.8275,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.24,
625
+ "learning_rate": 1.774666635853927e-05,
626
+ "loss": 0.867,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.24,
631
+ "learning_rate": 1.7698339834299064e-05,
632
+ "loss": 0.9036,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.25,
637
+ "learning_rate": 1.7649567864506943e-05,
638
+ "loss": 0.9314,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.25,
643
+ "learning_rate": 1.7600353271233316e-05,
644
+ "loss": 0.8757,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.25,
649
+ "learning_rate": 1.7550698902159897e-05,
650
+ "loss": 0.9196,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.25,
655
+ "learning_rate": 1.7500607630414973e-05,
656
+ "loss": 0.8508,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.26,
661
+ "learning_rate": 1.745008235440711e-05,
662
+ "loss": 0.8699,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.26,
667
+ "learning_rate": 1.7399125997657478e-05,
668
+ "loss": 0.8734,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.26,
673
+ "learning_rate": 1.7347741508630673e-05,
674
+ "loss": 0.8488,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.26,
679
+ "learning_rate": 1.729593186056412e-05,
680
+ "loss": 0.8975,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.27,
685
+ "learning_rate": 1.7243700051296016e-05,
686
+ "loss": 0.9325,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.27,
691
+ "learning_rate": 1.71910491030919e-05,
692
+ "loss": 0.8745,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.27,
697
+ "learning_rate": 1.713798206246974e-05,
698
+ "loss": 0.945,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.27,
703
+ "learning_rate": 1.708450200002368e-05,
704
+ "loss": 0.9282,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.27,
709
+ "learning_rate": 1.703061201024636e-05,
710
+ "loss": 0.8688,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.28,
715
+ "learning_rate": 1.6976315211349848e-05,
716
+ "loss": 0.8962,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.28,
721
+ "learning_rate": 1.6921614745085236e-05,
722
+ "loss": 0.8591,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.28,
727
+ "learning_rate": 1.6866513776560844e-05,
728
+ "loss": 0.8918,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.28,
733
+ "learning_rate": 1.6811015494059048e-05,
734
+ "loss": 0.9125,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.29,
739
+ "learning_rate": 1.6755123108851846e-05,
740
+ "loss": 0.8773,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.29,
745
+ "learning_rate": 1.669883985501501e-05,
746
+ "loss": 0.9334,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.29,
751
+ "learning_rate": 1.6642168989240977e-05,
752
+ "loss": 0.887,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.29,
757
+ "learning_rate": 1.658511379065039e-05,
758
+ "loss": 0.8577,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.3,
763
+ "learning_rate": 1.6527677560602364e-05,
764
+ "loss": 0.8751,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.3,
769
+ "learning_rate": 1.6469863622503478e-05,
770
+ "loss": 0.8974,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.3,
775
+ "learning_rate": 1.641167532161545e-05,
776
+ "loss": 0.9063,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.3,
781
+ "learning_rate": 1.6353116024861584e-05,
782
+ "loss": 0.8761,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.31,
787
+ "learning_rate": 1.6294189120631956e-05,
788
+ "loss": 0.8967,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.31,
793
+ "learning_rate": 1.6234898018587336e-05,
794
+ "loss": 0.8966,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.31,
799
+ "learning_rate": 1.617524614946192e-05,
800
+ "loss": 0.901,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.31,
805
+ "learning_rate": 1.6115236964864798e-05,
806
+ "loss": 0.843,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.31,
811
+ "learning_rate": 1.6054873937080248e-05,
812
+ "loss": 0.8904,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.32,
817
+ "learning_rate": 1.5994160558866803e-05,
818
+ "loss": 0.9368,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.32,
823
+ "learning_rate": 1.5933100343255184e-05,
824
+ "loss": 0.9121,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.32,
829
+ "learning_rate": 1.5871696823344998e-05,
830
+ "loss": 0.928,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.32,
835
+ "learning_rate": 1.580995355210031e-05,
836
+ "loss": 0.8595,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.33,
841
+ "learning_rate": 1.5747874102144073e-05,
842
+ "loss": 0.827,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.33,
847
+ "learning_rate": 1.5685462065551375e-05,
848
+ "loss": 0.8894,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.33,
853
+ "learning_rate": 1.562272105364164e-05,
854
+ "loss": 0.8695,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.33,
859
+ "learning_rate": 1.5559654696769628e-05,
860
+ "loss": 0.8895,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.34,
865
+ "learning_rate": 1.5496266644115386e-05,
866
+ "loss": 0.9051,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.34,
871
+ "learning_rate": 1.5432560563473106e-05,
872
+ "loss": 0.8599,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.34,
877
+ "learning_rate": 1.536854014103888e-05,
878
+ "loss": 0.8624,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.34,
883
+ "learning_rate": 1.5304209081197425e-05,
884
+ "loss": 0.8795,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.35,
889
+ "learning_rate": 1.5239571106307729e-05,
890
+ "loss": 0.8165,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.35,
895
+ "learning_rate": 1.5174629956487659e-05,
896
+ "loss": 0.8826,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.35,
901
+ "learning_rate": 1.5109389389397566e-05,
902
+ "loss": 0.8126,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.35,
907
+ "learning_rate": 1.5043853180022838e-05,
908
+ "loss": 0.8531,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.35,
913
+ "learning_rate": 1.4978025120455484e-05,
914
+ "loss": 0.8569,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.36,
919
+ "learning_rate": 1.4911909019674703e-05,
920
+ "loss": 0.8385,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.36,
925
+ "learning_rate": 1.4845508703326504e-05,
926
+ "loss": 0.8987,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.36,
931
+ "learning_rate": 1.4778828013502318e-05,
932
+ "loss": 0.8636,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.36,
937
+ "learning_rate": 1.4711870808516708e-05,
938
+ "loss": 0.8986,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.37,
943
+ "learning_rate": 1.4644640962684107e-05,
944
+ "loss": 0.8355,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.37,
949
+ "learning_rate": 1.4577142366094643e-05,
950
+ "loss": 0.8899,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.37,
955
+ "learning_rate": 1.4509378924389044e-05,
956
+ "loss": 0.8985,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.37,
961
+ "learning_rate": 1.4441354558532654e-05,
962
+ "loss": 0.8431,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.38,
967
+ "learning_rate": 1.4373073204588556e-05,
968
+ "loss": 0.8805,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.38,
973
+ "learning_rate": 1.4304538813489808e-05,
974
+ "loss": 0.8278,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.38,
979
+ "learning_rate": 1.4235755350810854e-05,
980
+ "loss": 0.8554,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.38,
985
+ "learning_rate": 1.4166726796538044e-05,
986
+ "loss": 0.8091,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.38,
991
+ "learning_rate": 1.4097457144839362e-05,
992
+ "loss": 0.8755,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.39,
997
+ "learning_rate": 1.4027950403833295e-05,
998
+ "loss": 0.8718,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.39,
1003
+ "learning_rate": 1.3958210595356924e-05,
1004
+ "loss": 0.8415,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.39,
1009
+ "learning_rate": 1.388824175473321e-05,
1010
+ "loss": 0.8597,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.39,
1015
+ "learning_rate": 1.3818047930537491e-05,
1016
+ "loss": 0.9381,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.4,
1021
+ "learning_rate": 1.3747633184363234e-05,
1022
+ "loss": 0.8926,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.4,
1027
+ "learning_rate": 1.3677001590587011e-05,
1028
+ "loss": 0.8472,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.4,
1033
+ "learning_rate": 1.3606157236132756e-05,
1034
+ "loss": 0.8711,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.4,
1039
+ "learning_rate": 1.3535104220235262e-05,
1040
+ "loss": 0.8187,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.41,
1045
+ "learning_rate": 1.3463846654203021e-05,
1046
+ "loss": 0.8371,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.41,
1051
+ "learning_rate": 1.3392388661180303e-05,
1052
+ "loss": 0.8185,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.41,
1057
+ "learning_rate": 1.3320734375908608e-05,
1058
+ "loss": 0.8315,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.41,
1063
+ "learning_rate": 1.3248887944487397e-05,
1064
+ "loss": 0.8923,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.42,
1069
+ "learning_rate": 1.3176853524134198e-05,
1070
+ "loss": 0.8946,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.42,
1075
+ "learning_rate": 1.3104635282944054e-05,
1076
+ "loss": 0.8792,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.42,
1081
+ "learning_rate": 1.3032237399648357e-05,
1082
+ "loss": 0.8519,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.42,
1087
+ "learning_rate": 1.2959664063373044e-05,
1088
+ "loss": 0.8592,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.42,
1093
+ "learning_rate": 1.2886919473396212e-05,
1094
+ "loss": 0.8558,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.43,
1099
+ "learning_rate": 1.281400783890513e-05,
1100
+ "loss": 0.8826,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.43,
1105
+ "learning_rate": 1.2740933378752685e-05,
1106
+ "loss": 0.8083,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.43,
1111
+ "learning_rate": 1.2667700321213282e-05,
1112
+ "loss": 0.863,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.43,
1117
+ "learning_rate": 1.2594312903738164e-05,
1118
+ "loss": 0.8179,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.44,
1123
+ "learning_rate": 1.2520775372710242e-05,
1124
+ "loss": 0.785,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.44,
1129
+ "learning_rate": 1.2447091983198368e-05,
1130
+ "loss": 0.8361,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.44,
1135
+ "learning_rate": 1.2373266998711152e-05,
1136
+ "loss": 0.8412,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.44,
1141
+ "learning_rate": 1.2299304690950235e-05,
1142
+ "loss": 0.8854,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.45,
1147
+ "learning_rate": 1.2225209339563144e-05,
1148
+ "loss": 0.8221,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.45,
1153
+ "learning_rate": 1.2150985231895647e-05,
1154
+ "loss": 0.8823,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.45,
1159
+ "learning_rate": 1.2076636662743673e-05,
1160
+ "loss": 0.905,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.45,
1165
+ "learning_rate": 1.2002167934104815e-05,
1166
+ "loss": 0.9039,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.46,
1171
+ "learning_rate": 1.1927583354929393e-05,
1172
+ "loss": 0.8522,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.46,
1177
+ "learning_rate": 1.1852887240871145e-05,
1178
+ "loss": 0.8775,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.46,
1183
+ "learning_rate": 1.177808391403749e-05,
1184
+ "loss": 0.8461,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.46,
1189
+ "learning_rate": 1.170317770273946e-05,
1190
+ "loss": 0.8631,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.46,
1195
+ "learning_rate": 1.162817294124124e-05,
1196
+ "loss": 0.8432,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.47,
1201
+ "learning_rate": 1.1553073969509382e-05,
1202
+ "loss": 0.8647,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.47,
1207
+ "learning_rate": 1.1477885132961679e-05,
1208
+ "loss": 0.815,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.47,
1213
+ "learning_rate": 1.1402610782215735e-05,
1214
+ "loss": 0.8566,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.47,
1219
+ "learning_rate": 1.1327255272837221e-05,
1220
+ "loss": 0.8163,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.48,
1225
+ "learning_rate": 1.1251822965087856e-05,
1226
+ "loss": 0.8177,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.48,
1231
+ "learning_rate": 1.1176318223673106e-05,
1232
+ "loss": 0.9081,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.48,
1237
+ "learning_rate": 1.1100745417489631e-05,
1238
+ "loss": 0.8451,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.48,
1243
+ "learning_rate": 1.1025108919372501e-05,
1244
+ "loss": 0.8246,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.49,
1249
+ "learning_rate": 1.0949413105842148e-05,
1250
+ "loss": 0.8439,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.49,
1255
+ "learning_rate": 1.0873662356851164e-05,
1256
+ "loss": 0.8444,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.49,
1261
+ "learning_rate": 1.0797861055530832e-05,
1262
+ "loss": 0.852,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.49,
1267
+ "learning_rate": 1.0722013587937528e-05,
1268
+ "loss": 0.8598,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.5,
1273
+ "learning_rate": 1.064612434279892e-05,
1274
+ "loss": 0.896,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.5,
1279
+ "learning_rate": 1.057019771126004e-05,
1280
+ "loss": 0.7676,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.5,
1285
+ "learning_rate": 1.0494238086629184e-05,
1286
+ "loss": 0.8303,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.5,
1291
+ "learning_rate": 1.0418249864123724e-05,
1292
+ "loss": 0.8253,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.5,
1297
+ "learning_rate": 1.0342237440615765e-05,
1298
+ "loss": 0.8391,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.51,
1303
+ "learning_rate": 1.026620521437775e-05,
1304
+ "loss": 0.8656,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.51,
1309
+ "learning_rate": 1.0190157584827952e-05,
1310
+ "loss": 0.8424,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.51,
1315
+ "learning_rate": 1.0114098952275935e-05,
1316
+ "loss": 0.8154,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.51,
1321
+ "learning_rate": 1.0038033717667907e-05,
1322
+ "loss": 0.8372,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.52,
1327
+ "learning_rate": 9.961966282332094e-06,
1328
+ "loss": 0.8529,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.52,
1333
+ "learning_rate": 9.885901047724066e-06,
1334
+ "loss": 0.8619,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.52,
1339
+ "learning_rate": 9.80984241517205e-06,
1340
+ "loss": 0.7912,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.52,
1345
+ "learning_rate": 9.733794785622254e-06,
1346
+ "loss": 0.8761,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.53,
1351
+ "learning_rate": 9.657762559384237e-06,
1352
+ "loss": 0.8112,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.53,
1357
+ "learning_rate": 9.581750135876277e-06,
1358
+ "loss": 0.8028,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.53,
1363
+ "learning_rate": 9.505761913370814e-06,
1364
+ "loss": 0.8751,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.53,
1369
+ "learning_rate": 9.429802288739963e-06,
1370
+ "loss": 0.8743,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.54,
1375
+ "learning_rate": 9.353875657201084e-06,
1376
+ "loss": 0.8358,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.54,
1381
+ "learning_rate": 9.277986412062476e-06,
1382
+ "loss": 0.7817,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.54,
1387
+ "learning_rate": 9.202138944469168e-06,
1388
+ "loss": 0.8076,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.54,
1393
+ "learning_rate": 9.12633764314884e-06,
1394
+ "loss": 0.8662,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.54,
1399
+ "learning_rate": 9.050586894157853e-06,
1400
+ "loss": 0.8079,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.55,
1405
+ "learning_rate": 8.974891080627504e-06,
1406
+ "loss": 0.8166,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.55,
1411
+ "learning_rate": 8.899254582510369e-06,
1412
+ "loss": 0.8975,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.55,
1417
+ "learning_rate": 8.823681776326899e-06,
1418
+ "loss": 0.7989,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.55,
1423
+ "learning_rate": 8.748177034912148e-06,
1424
+ "loss": 0.8004,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.56,
1429
+ "learning_rate": 8.672744727162782e-06,
1430
+ "loss": 0.8065,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.56,
1435
+ "learning_rate": 8.597389217784268e-06,
1436
+ "loss": 0.799,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.56,
1441
+ "learning_rate": 8.522114867038323e-06,
1442
+ "loss": 0.8044,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.56,
1447
+ "learning_rate": 8.446926030490623e-06,
1448
+ "loss": 0.7698,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.57,
1453
+ "learning_rate": 8.371827058758763e-06,
1454
+ "loss": 0.8325,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.57,
1459
+ "learning_rate": 8.296822297260541e-06,
1460
+ "loss": 0.8511,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.57,
1465
+ "learning_rate": 8.221916085962511e-06,
1466
+ "loss": 0.8323,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.57,
1471
+ "learning_rate": 8.147112759128859e-06,
1472
+ "loss": 0.8127,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.58,
1477
+ "learning_rate": 8.072416645070609e-06,
1478
+ "loss": 0.8726,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.58,
1483
+ "learning_rate": 7.997832065895188e-06,
1484
+ "loss": 0.824,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.58,
1489
+ "learning_rate": 7.923363337256327e-06,
1490
+ "loss": 0.7932,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.58,
1495
+ "learning_rate": 7.849014768104354e-06,
1496
+ "loss": 0.8338,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.58,
1501
+ "learning_rate": 7.774790660436857e-06,
1502
+ "loss": 0.8015,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.59,
1507
+ "learning_rate": 7.700695309049768e-06,
1508
+ "loss": 0.7834,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.59,
1513
+ "learning_rate": 7.626733001288852e-06,
1514
+ "loss": 0.8021,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.59,
1519
+ "learning_rate": 7.552908016801633e-06,
1520
+ "loss": 0.8361,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.59,
1525
+ "learning_rate": 7.479224627289765e-06,
1526
+ "loss": 0.8649,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.6,
1531
+ "learning_rate": 7.40568709626184e-06,
1532
+ "loss": 0.8319,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.6,
1537
+ "learning_rate": 7.3322996787867225e-06,
1538
+ "loss": 0.8105,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.6,
1543
+ "learning_rate": 7.259066621247316e-06,
1544
+ "loss": 0.878,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.6,
1549
+ "learning_rate": 7.185992161094877e-06,
1550
+ "loss": 0.7354,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.61,
1555
+ "learning_rate": 7.113080526603793e-06,
1556
+ "loss": 0.8544,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.61,
1561
+ "learning_rate": 7.040335936626959e-06,
1562
+ "loss": 0.8877,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.61,
1567
+ "learning_rate": 6.967762600351646e-06,
1568
+ "loss": 0.8115,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.61,
1573
+ "learning_rate": 6.895364717055949e-06,
1574
+ "loss": 0.8131,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.62,
1579
+ "learning_rate": 6.8231464758658075e-06,
1580
+ "loss": 0.8128,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.62,
1585
+ "learning_rate": 6.7511120555126055e-06,
1586
+ "loss": 0.8055,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.62,
1591
+ "learning_rate": 6.6792656240913936e-06,
1592
+ "loss": 0.8022,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.62,
1597
+ "learning_rate": 6.607611338819697e-06,
1598
+ "loss": 0.8304,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.62,
1603
+ "learning_rate": 6.536153345796984e-06,
1604
+ "loss": 0.8399,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.63,
1609
+ "learning_rate": 6.464895779764742e-06,
1610
+ "loss": 0.7836,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.63,
1615
+ "learning_rate": 6.393842763867248e-06,
1616
+ "loss": 0.7966,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.63,
1621
+ "learning_rate": 6.3229984094129895e-06,
1622
+ "loss": 0.8371,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.63,
1627
+ "learning_rate": 6.252366815636768e-06,
1628
+ "loss": 0.8918,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.64,
1633
+ "learning_rate": 6.181952069462514e-06,
1634
+ "loss": 0.819,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.64,
1639
+ "learning_rate": 6.111758245266795e-06,
1640
+ "loss": 0.824,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.64,
1645
+ "learning_rate": 6.041789404643078e-06,
1646
+ "loss": 0.8308,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.64,
1651
+ "learning_rate": 5.972049596166707e-06,
1652
+ "loss": 0.8239,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.65,
1657
+ "learning_rate": 5.902542855160642e-06,
1658
+ "loss": 0.798,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.65,
1663
+ "learning_rate": 5.83327320346196e-06,
1664
+ "loss": 0.8063,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.65,
1669
+ "learning_rate": 5.76424464918915e-06,
1670
+ "loss": 0.7963,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.65,
1675
+ "learning_rate": 5.695461186510194e-06,
1676
+ "loss": 0.8204,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.65,
1681
+ "learning_rate": 5.626926795411447e-06,
1682
+ "loss": 0.8204,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.66,
1687
+ "learning_rate": 5.558645441467347e-06,
1688
+ "loss": 0.7832,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.66,
1693
+ "learning_rate": 5.490621075610958e-06,
1694
+ "loss": 0.8548,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.66,
1699
+ "learning_rate": 5.422857633905358e-06,
1700
+ "loss": 0.8022,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.66,
1705
+ "learning_rate": 5.355359037315893e-06,
1706
+ "loss": 0.8975,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.67,
1711
+ "learning_rate": 5.288129191483297e-06,
1712
+ "loss": 0.8389,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.67,
1717
+ "learning_rate": 5.221171986497686e-06,
1718
+ "loss": 0.8377,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.67,
1723
+ "learning_rate": 5.1544912966735e-06,
1724
+ "loss": 0.7948,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.67,
1729
+ "learning_rate": 5.0880909803252974e-06,
1730
+ "loss": 0.7896,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.68,
1735
+ "learning_rate": 5.021974879544522e-06,
1736
+ "loss": 0.8582,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.68,
1741
+ "learning_rate": 4.956146819977166e-06,
1742
+ "loss": 0.842,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.68,
1747
+ "learning_rate": 4.890610610602437e-06,
1748
+ "loss": 0.8021,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.68,
1753
+ "learning_rate": 4.82537004351234e-06,
1754
+ "loss": 0.7894,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.69,
1759
+ "learning_rate": 4.760428893692274e-06,
1760
+ "loss": 0.8664,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.69,
1765
+ "learning_rate": 4.695790918802577e-06,
1766
+ "loss": 0.8016,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.69,
1771
+ "learning_rate": 4.631459858961123e-06,
1772
+ "loss": 0.8085,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.69,
1777
+ "learning_rate": 4.567439436526897e-06,
1778
+ "loss": 0.8079,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.69,
1783
+ "learning_rate": 4.5037333558846155e-06,
1784
+ "loss": 0.782,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.7,
1789
+ "learning_rate": 4.440345303230377e-06,
1790
+ "loss": 0.7886,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.7,
1795
+ "learning_rate": 4.377278946358363e-06,
1796
+ "loss": 0.8899,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.7,
1801
+ "learning_rate": 4.314537934448628e-06,
1802
+ "loss": 0.8182,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.7,
1807
+ "learning_rate": 4.2521258978559324e-06,
1808
+ "loss": 0.8336,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.71,
1813
+ "learning_rate": 4.19004644789969e-06,
1814
+ "loss": 0.8754,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.71,
1819
+ "learning_rate": 4.128303176655002e-06,
1820
+ "loss": 0.7593,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.71,
1825
+ "learning_rate": 4.066899656744816e-06,
1826
+ "loss": 0.8286,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.71,
1831
+ "learning_rate": 4.005839441133198e-06,
1832
+ "loss": 0.8598,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.72,
1837
+ "learning_rate": 3.945126062919756e-06,
1838
+ "loss": 0.8381,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.72,
1843
+ "learning_rate": 3.884763035135205e-06,
1844
+ "loss": 0.7859,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.72,
1849
+ "learning_rate": 3.824753850538082e-06,
1850
+ "loss": 0.8469,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.72,
1855
+ "learning_rate": 3.7651019814126656e-06,
1856
+ "loss": 0.8343,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.73,
1861
+ "learning_rate": 3.7058108793680467e-06,
1862
+ "loss": 0.8597,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.73,
1867
+ "learning_rate": 3.646883975138421e-06,
1868
+ "loss": 0.8567,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.73,
1873
+ "learning_rate": 3.588324678384555e-06,
1874
+ "loss": 0.7813,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.73,
1879
+ "learning_rate": 3.5301363774965256e-06,
1880
+ "loss": 0.7459,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.73,
1885
+ "learning_rate": 3.4723224393976353e-06,
1886
+ "loss": 0.8251,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.74,
1891
+ "learning_rate": 3.414886209349615e-06,
1892
+ "loss": 0.8412,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.74,
1897
+ "learning_rate": 3.357831010759026e-06,
1898
+ "loss": 0.7613,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.74,
1903
+ "learning_rate": 3.301160144984992e-06,
1904
+ "loss": 0.8462,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.74,
1909
+ "learning_rate": 3.2448768911481577e-06,
1910
+ "loss": 0.8351,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.75,
1915
+ "learning_rate": 3.1889845059409552e-06,
1916
+ "loss": 0.8315,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.75,
1921
+ "learning_rate": 3.1334862234391627e-06,
1922
+ "loss": 0.7783,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.75,
1927
+ "learning_rate": 3.078385254914764e-06,
1928
+ "loss": 0.7982,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.75,
1933
+ "learning_rate": 3.023684788650154e-06,
1934
+ "loss": 0.8098,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.76,
1939
+ "learning_rate": 2.9693879897536436e-06,
1940
+ "loss": 0.8252,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.76,
1945
+ "learning_rate": 2.91549799997632e-06,
1946
+ "loss": 0.8619,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.76,
1951
+ "learning_rate": 2.8620179375302604e-06,
1952
+ "loss": 0.8367,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.76,
1957
+ "learning_rate": 2.8089508969081e-06,
1958
+ "loss": 0.7489,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.77,
1963
+ "learning_rate": 2.7562999487039822e-06,
1964
+ "loss": 0.8152,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.77,
1969
+ "learning_rate": 2.7040681394358813e-06,
1970
+ "loss": 0.8379,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.77,
1975
+ "learning_rate": 2.6522584913693295e-06,
1976
+ "loss": 0.8188,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.77,
1981
+ "learning_rate": 2.6008740023425248e-06,
1982
+ "loss": 0.796,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.77,
1987
+ "learning_rate": 2.5499176455928933e-06,
1988
+ "loss": 0.8382,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.78,
1993
+ "learning_rate": 2.4993923695850307e-06,
1994
+ "loss": 0.8543,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.78,
1999
+ "learning_rate": 2.449301097840107e-06,
2000
+ "loss": 0.8014,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.78,
2005
+ "learning_rate": 2.3996467287666914e-06,
2006
+ "loss": 0.7993,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.78,
2011
+ "learning_rate": 2.3504321354930572e-06,
2012
+ "loss": 0.7433,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.79,
2017
+ "learning_rate": 2.3016601657009364e-06,
2018
+ "loss": 0.7676,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.79,
2023
+ "learning_rate": 2.253333641460732e-06,
2024
+ "loss": 0.784,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.79,
2029
+ "learning_rate": 2.205455359068227e-06,
2030
+ "loss": 0.7983,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.79,
2035
+ "learning_rate": 2.1580280888828e-06,
2036
+ "loss": 0.8481,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.8,
2041
+ "learning_rate": 2.1110545751671074e-06,
2042
+ "loss": 0.8255,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.8,
2047
+ "learning_rate": 2.0645375359283047e-06,
2048
+ "loss": 0.78,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.8,
2053
+ "learning_rate": 2.0184796627607728e-06,
2054
+ "loss": 0.7633,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.8,
2059
+ "learning_rate": 1.972883620690366e-06,
2060
+ "loss": 0.8385,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.81,
2065
+ "learning_rate": 1.9277520480202205e-06,
2066
+ "loss": 0.7888,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.81,
2071
+ "learning_rate": 1.8830875561780904e-06,
2072
+ "loss": 0.8004,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.81,
2077
+ "learning_rate": 1.8388927295652449e-06,
2078
+ "loss": 0.8498,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.81,
2083
+ "learning_rate": 1.795170125406921e-06,
2084
+ "loss": 0.8315,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.81,
2089
+ "learning_rate": 1.7519222736043662e-06,
2090
+ "loss": 0.8116,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.82,
2095
+ "learning_rate": 1.7091516765884464e-06,
2096
+ "loss": 0.8113,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.82,
2101
+ "learning_rate": 1.6668608091748495e-06,
2102
+ "loss": 0.817,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.82,
2107
+ "learning_rate": 1.625052118420889e-06,
2108
+ "loss": 0.7449,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.82,
2113
+ "learning_rate": 1.5837280234839013e-06,
2114
+ "loss": 0.7696,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.83,
2119
+ "learning_rate": 1.542890915481282e-06,
2120
+ "loss": 0.8255,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.83,
2125
+ "learning_rate": 1.5025431573521209e-06,
2126
+ "loss": 0.8188,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.83,
2131
+ "learning_rate": 1.4626870837204776e-06,
2132
+ "loss": 0.8371,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.83,
2137
+ "learning_rate": 1.4233250007602873e-06,
2138
+ "loss": 0.7561,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.84,
2143
+ "learning_rate": 1.3844591860619382e-06,
2144
+ "loss": 0.7779,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.84,
2149
+ "learning_rate": 1.346091888500466e-06,
2150
+ "loss": 0.8593,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.84,
2155
+ "learning_rate": 1.308225328105439e-06,
2156
+ "loss": 0.7571,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.84,
2161
+ "learning_rate": 1.2708616959324893e-06,
2162
+ "loss": 0.8681,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.85,
2167
+ "learning_rate": 1.2340031539365483e-06,
2168
+ "loss": 0.7252,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.85,
2173
+ "learning_rate": 1.1976518348467426e-06,
2174
+ "loss": 0.822,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.85,
2179
+ "learning_rate": 1.161809842042988e-06,
2180
+ "loss": 0.8157,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.85,
2185
+ "learning_rate": 1.1264792494342858e-06,
2186
+ "loss": 0.8135,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.85,
2191
+ "learning_rate": 1.091662101338714e-06,
2192
+ "loss": 0.8323,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.86,
2197
+ "learning_rate": 1.0573604123651504e-06,
2198
+ "loss": 0.7858,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.86,
2203
+ "learning_rate": 1.0235761672966903e-06,
2204
+ "loss": 0.8419,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.86,
2209
+ "learning_rate": 9.903113209758098e-07,
2210
+ "loss": 0.7914,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.86,
2215
+ "learning_rate": 9.575677981912457e-07,
2216
+ "loss": 0.8128,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.87,
2221
+ "learning_rate": 9.25347493566634e-07,
2222
+ "loss": 0.78,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.87,
2227
+ "learning_rate": 8.936522714508678e-07,
2228
+ "loss": 0.813,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.87,
2233
+ "learning_rate": 8.624839658102346e-07,
2234
+ "loss": 0.8214,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.87,
2239
+ "learning_rate": 8.318443801222919e-07,
2240
+ "loss": 0.825,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.88,
2245
+ "learning_rate": 8.017352872715078e-07,
2246
+ "loss": 0.8359,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.88,
2251
+ "learning_rate": 7.7215842944669e-07,
2252
+ "loss": 0.7801,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.88,
2257
+ "learning_rate": 7.431155180401705e-07,
2258
+ "loss": 0.7953,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.88,
2263
+ "learning_rate": 7.146082335487825e-07,
2264
+ "loss": 0.7873,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.88,
2269
+ "learning_rate": 6.866382254766158e-07,
2270
+ "loss": 0.861,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.89,
2275
+ "learning_rate": 6.592071122395849e-07,
2276
+ "loss": 0.7912,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.89,
2281
+ "learning_rate": 6.323164810717753e-07,
2282
+ "loss": 0.7769,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.89,
2287
+ "learning_rate": 6.059678879336006e-07,
2288
+ "loss": 0.8244,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.89,
2293
+ "learning_rate": 5.801628574217733e-07,
2294
+ "loss": 0.8066,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.9,
2299
+ "learning_rate": 5.549028826810888e-07,
2300
+ "loss": 0.8034,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.9,
2305
+ "learning_rate": 5.301894253180295e-07,
2306
+ "loss": 0.7885,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.9,
2311
+ "learning_rate": 5.060239153161872e-07,
2312
+ "loss": 0.8412,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.9,
2317
+ "learning_rate": 4.824077509535252e-07,
2318
+ "loss": 0.7949,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.91,
2323
+ "learning_rate": 4.5934229872146683e-07,
2324
+ "loss": 0.7916,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.91,
2329
+ "learning_rate": 4.3682889324583086e-07,
2330
+ "loss": 0.7595,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.91,
2335
+ "learning_rate": 4.1486883720960436e-07,
2336
+ "loss": 0.7135,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.91,
2341
+ "learning_rate": 3.934634012775662e-07,
2342
+ "loss": 0.795,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.92,
2347
+ "learning_rate": 3.726138240227628e-07,
2348
+ "loss": 0.8281,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.92,
2353
+ "learning_rate": 3.5232131185484075e-07,
2354
+ "loss": 0.8039,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.92,
2359
+ "learning_rate": 3.325870389502439e-07,
2360
+ "loss": 0.7719,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.92,
2365
+ "learning_rate": 3.1341214718426885e-07,
2366
+ "loss": 0.8072,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.92,
2371
+ "learning_rate": 2.9479774606499755e-07,
2372
+ "loss": 0.8029,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.93,
2377
+ "learning_rate": 2.7674491266909023e-07,
2378
+ "loss": 0.7855,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.93,
2383
+ "learning_rate": 2.5925469157947135e-07,
2384
+ "loss": 0.8173,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.93,
2389
+ "learning_rate": 2.423280948248841e-07,
2390
+ "loss": 0.7435,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.93,
2395
+ "learning_rate": 2.2596610182133328e-07,
2396
+ "loss": 0.8452,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.94,
2401
+ "learning_rate": 2.1016965931541012e-07,
2402
+ "loss": 0.7982,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.94,
2407
+ "learning_rate": 1.9493968132951456e-07,
2408
+ "loss": 0.771,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.94,
2413
+ "learning_rate": 1.802770491089667e-07,
2414
+ "loss": 0.7866,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.94,
2419
+ "learning_rate": 1.661826110710163e-07,
2420
+ "loss": 0.8198,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.95,
2425
+ "learning_rate": 1.5265718275574658e-07,
2426
+ "loss": 0.7537,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.95,
2431
+ "learning_rate": 1.3970154677889313e-07,
2432
+ "loss": 0.7839,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.95,
2437
+ "learning_rate": 1.2731645278655448e-07,
2438
+ "loss": 0.7849,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.95,
2443
+ "learning_rate": 1.1550261741181568e-07,
2444
+ "loss": 0.8754,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.96,
2449
+ "learning_rate": 1.0426072423328382e-07,
2450
+ "loss": 0.7954,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.96,
2455
+ "learning_rate": 9.359142373553287e-08,
2456
+ "loss": 0.8272,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.96,
2461
+ "learning_rate": 8.349533327146719e-08,
2462
+ "loss": 0.7997,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.96,
2467
+ "learning_rate": 7.397303702659675e-08,
2468
+ "loss": 0.7752,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.96,
2473
+ "learning_rate": 6.50250859852375e-08,
2474
+ "loss": 0.8586,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.97,
2479
+ "learning_rate": 5.665199789862907e-08,
2480
+ "loss": 0.8161,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.97,
2485
+ "learning_rate": 4.88542572549755e-08,
2486
+ "loss": 0.8268,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.97,
2491
+ "learning_rate": 4.163231525141309e-08,
2492
+ "loss": 0.8432,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.97,
2497
+ "learning_rate": 3.498658976790248e-08,
2498
+ "loss": 0.8082,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.98,
2503
+ "learning_rate": 2.8917465343047956e-08,
2504
+ "loss": 0.7384,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.98,
2509
+ "learning_rate": 2.3425293151845274e-08,
2510
+ "loss": 0.873,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.98,
2515
+ "learning_rate": 1.851039098537122e-08,
2516
+ "loss": 0.814,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.98,
2521
+ "learning_rate": 1.4173043232380557e-08,
2522
+ "loss": 0.8339,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.99,
2527
+ "learning_rate": 1.0413500862864745e-08,
2528
+ "loss": 0.8343,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.99,
2533
+ "learning_rate": 7.231981413520217e-09,
2534
+ "loss": 0.733,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.99,
2539
+ "learning_rate": 4.628668975166228e-09,
2540
+ "loss": 0.817,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.99,
2545
+ "learning_rate": 2.6037141820933752e-09,
2546
+ "loss": 0.8674,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 1.0,
2551
+ "learning_rate": 1.157234203341684e-09,
2552
+ "loss": 0.8376,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 1.0,
2557
+ "learning_rate": 2.8931273592824884e-10,
2558
+ "loss": 0.803,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 1.0,
2563
+ "learning_rate": 0.0,
2564
+ "loss": 0.8391,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 1.0,
2569
+ "step": 426,
2570
+ "total_flos": 1.7489761962148495e+18,
2571
+ "train_loss": 0.8527796469943624,
2572
+ "train_runtime": 1012.9291,
2573
+ "train_samples_per_second": 214.873,
2574
+ "train_steps_per_second": 0.421
2575
+ }
2576
+ ],
2577
+ "logging_steps": 1.0,
2578
+ "max_steps": 426,
2579
+ "num_train_epochs": 1,
2580
+ "save_steps": 5000,
2581
+ "total_flos": 1.7489761962148495e+18,
2582
+ "trial_name": null,
2583
+ "trial_params": null
2584
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca91a570a252195f778aed44093e543d34ea7877c46d110d835827391b873e90
3
+ size 5307