--- license: mit language: - en base_model: - meta-llama/Meta-Llama-3-8B pipeline_tag: text-generation tags: - transformers --- ## SPEED-synthesis-7b-senior [Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024 This is the senior data synthesis model of SPEED. ## Usage Below is an example to synthesize classification data using this senior generator. The prompts and misc scripts can be found in our [github page](https://github.com/haon-chen/SPEED) ### Transformers ```python import torch import os import random import numpy as np import json import re from torch import Tensor from transformers import AutoTokenizer, AutoModelForCausalLM from prompts_synthesis import get_create_classify_data_prompt from utils import fix_common_json_errors_and_loads LLAMA3_PROMPT = """ {prompt} [/INST] """.strip("\n") # Each query must come with a one-sentence instruction that describes the task tasks = [ 'Identify the intended age group for educational technology products.', 'Classify businesses based on their operational hours.' ] language = 'English' prompts = [LLAMA3_PROMPT.format(prompt=get_create_classify_data_prompt(task=task, language=language)[1]['content']) for task in tasks] tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-synthesis-7b-senior') model = AutoModelForCausalLM.from_pretrained('Haon-Chen/speed-synthesis-7b-senior') model.to("cuda:0") model.eval() tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token tokenizer.padding_side = "left" tokenizer.truncation_side = "left" with torch.inference_mode(): # Tokenize the input texts encodes = tokenizer(prompts, padding="longest", add_special_tokens=True, return_tensors="pt") input_ids = encodes.input_ids.to(model.device) attention_mask = encodes.attention_mask.to(model.device) # Set the generation parameters GEN_CONFIG = {"do_sample":True, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 800} output = model.generate( input_ids=input_ids, attention_mask=attention_mask, pad_token_id = tokenizer.eos_token_id, **GEN_CONFIG ) output_texts = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False) batch_results = [] for i in range(len(output_texts)): batch_results.append(output_texts[i][len(prompts[i]):].strip(' ')) # Format outputs bad_cnt=0 outputs = [] for i, result in enumerate(batch_results): try: output = fix_common_json_errors_and_loads(result) user_query = output.get("input_text", "") positive_document = output.get("label", "") hard_negative_document = output.get("misleading_label", "") except: bad_cnt+=1 continue out_data = { "query": user_query, "positives": [positive_document], "negatives": [hard_negative_document], "language": "English", "task_definition": tasks[i], } outputs.append(out_data) print(bad_cnt) print(outputs) ``` ## Citation If you find our paper or models helpful, please consider cite as follows: ```bibtex @article{chen2024little, title={Little Giants: Synthesizing High-Quality Embedding Data at Scale}, author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, journal={arXiv preprint arXiv:2410.18634}, year={2024} } ``` ## Limitations