File size: 2,455 Bytes
bbd68f6 fa2b331 bbd68f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mT5_multilingual_XLSum-sinhala-abstaractive-summarization_CNN-dailymail-V2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mT5_multilingual_XLSum-sinhala-abstaractive-summarization_CNN-dailymail-V2
This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the CNN daily-mail sinhala dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4863
- Rouge1: 19.9769
- Rouge2: 8.04
- Rougel: 19.0307
- Rougelsum: 19.7651
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00056
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 1.8746 | 1.0 | 750 | 1.8262 | 18.9753 | 7.9271 | 18.1349 | 18.7152 |
| 1.4727 | 2.0 | 1500 | 1.8094 | 19.2219 | 7.9749 | 18.4314 | 18.9405 |
| 1.2331 | 3.0 | 2250 | 1.8432 | 20.436 | 7.8378 | 19.584 | 20.1613 |
| 1.0381 | 4.0 | 3000 | 1.8987 | 20.2251 | 7.9593 | 19.1556 | 19.9829 |
| 0.8737 | 5.0 | 3750 | 1.9471 | 20.3262 | 7.8935 | 19.407 | 20.0628 |
| 0.7363 | 6.0 | 4500 | 2.0611 | 20.1551 | 7.5046 | 19.2213 | 19.963 |
| 0.6214 | 7.0 | 5250 | 2.1838 | 19.9045 | 7.6232 | 18.743 | 19.5983 |
| 0.5277 | 8.0 | 6000 | 2.3190 | 20.8581 | 8.1054 | 19.8079 | 20.5414 |
| 0.4576 | 9.0 | 6750 | 2.4091 | 20.028 | 7.7635 | 19.0721 | 19.7053 |
| 0.4099 | 10.0 | 7500 | 2.4863 | 19.9769 | 8.04 | 19.0307 | 19.7651 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|