--- license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vivit-b-16x2-kinetics400-finetuned-ucf101-subset results: [] --- # vivit-b-16x2-kinetics400-finetuned-ucf101-subset This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 991262442243755631422586792733310976.0000 - Accuracy: 0.5455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-----------------------------------------:|:-----:|:----:|:-----------------------------------------:|:--------:| | 872310942836251954510729370121797632.0000 | 0.5 | 10 | 991262442243755631422586792733310976.0000 | 0.5455 | | 872310942836251954510729370121797632.0000 | 1.5 | 20 | 991262442243755631422586792733310976.0000 | 0.5455 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.0 - Tokenizers 0.15.0