--- license: apache-2.0 --- [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). ## T5 model HPU configuration This model only contains the `GaudiConfig` file for running the [T5](https://huggingface.co/t5-base) model on Habana's Gaudi processors (HPU). **This model contains no model weights, only a GaudiConfig.** This enables to specify: - `use_fused_adam`: whether to use Habana's custom AdamW implementation - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator ## Usage The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs. [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/summarization/run_summarization.py) is a summarization example script to fine-tune a model. You can run it with T5-small with the following command: ```bash python run_summarization.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 4 \ --overwrite_output_dir \ --predict_with_generate \ --use_habana \ --use_lazy_mode \ --gaudi_config_name Habana/t5 \ --ignore_pad_token_for_loss False \ --pad_to_max_length \ --save_strategy epoch \ --throughput_warmup_steps 3 ``` Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.