File size: 5,790 Bytes
6bff08e fc76271 6bff08e 9dfbc41 6bff08e fc76271 9dfbc41 fc76271 9dfbc41 fc76271 6bff08e 9dfbc41 6bff08e fc76271 6bff08e fc76271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language:
- la
inference: false
tags:
- BERT
- HPLT
- encoder
license: apache-2.0
datasets:
- HPLT/hplt_monolingual_v1_2
---
# HPLT Bert for Latin
<img src="https://hplt-project.org/_next/static/media/logo-hplt.d5e16ca5.svg" width=12.5%>
This is one of the encoder-only monolingual language models trained as a first release by the [HPLT project](https://hplt-project.org/).
It is a so called masked language model. In particular, we used the modification of the classic BERT model named [LTG-BERT](https://aclanthology.org/2023.findings-eacl.146/).
A monolingual LTG-BERT model is trained for every major language in the [HPLT 1.2 data release](https://hplt-project.org/datasets/v1.2) (*75* models total).
All the HPLT encoder-only models use the same hyper-parameters, roughly following the BERT-base setup:
- hidden size: 768
- attention heads: 12
- layers: 12
- vocabulary size: 32768
Every model uses its own tokenizer trained on language-specific HPLT data.
See sizes of the training corpora, evaluation results and more in our [language model training report](https://hplt-project.org/HPLT_D4_1___First_language_models_trained.pdf).
[The training code](https://github.com/hplt-project/HPLT-WP4).
[The training statistics of all 75 runs](https://api.wandb.ai/links/ltg/kduj7mjn)
## Example usage
This model currently needs a custom wrapper from `modeling_ltgbert.py`, you should therefore load the model with `trust_remote_code=True`.
```python
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("HPLT/hplt_bert_base_la")
model = AutoModelForMaskedLM.from_pretrained("HPLT/hplt_bert_base_la", trust_remote_code=True)
mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
input_text = tokenizer("It's a beautiful[MASK].", return_tensors="pt")
output_p = model(**input_text)
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)
# should output: '[CLS] It's a beautiful place.[SEP]'
print(tokenizer.decode(output_text[0].tolist()))
```
The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.
## Intermediate checkpoints
We are releasing 10 intermediate checkpoints for each model at intervals of every 3125 training steps in separate branches. The naming convention is `stepXXX`: for example, `step18750`.
You can load a specific model revision with `transformers` using the argument `revision`:
```python
model = AutoModelForMaskedLM.from_pretrained("HPLT/hplt_bert_base_la", revision="step21875", trust_remote_code=True)
```
You can access all the revisions for the models with the following code:
```python
from huggingface_hub import list_repo_refs
out = list_repo_refs("HPLT/hplt_bert_base_la")
print([b.name for b in out.branches])
```
## Cite us
```bibtex
@inproceedings{samuel-etal-2023-trained,
title = "Trained on 100 million words and still in shape: {BERT} meets {B}ritish {N}ational {C}orpus",
author = "Samuel, David and
Kutuzov, Andrey and
{\O}vrelid, Lilja and
Velldal, Erik",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-eacl.146",
doi = "10.18653/v1/2023.findings-eacl.146",
pages = "1954--1974"
})
```
```bibtex
@inproceedings{de-gibert-etal-2024-new-massive,
title = "A New Massive Multilingual Dataset for High-Performance Language Technologies",
author = {de Gibert, Ona and
Nail, Graeme and
Arefyev, Nikolay and
Ba{\~n}{\'o}n, Marta and
van der Linde, Jelmer and
Ji, Shaoxiong and
Zaragoza-Bernabeu, Jaume and
Aulamo, Mikko and
Ram{\'\i}rez-S{\'a}nchez, Gema and
Kutuzov, Andrey and
Pyysalo, Sampo and
Oepen, Stephan and
Tiedemann, J{\"o}rg},
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.100",
pages = "1116--1128",
abstract = "We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of {\mbox{$\approx$}} 5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.",
}
```
|