--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: SEMDataset split: train args: SEMDataset metrics: - name: Accuracy type: accuracy value: 0.782051282051282 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5657 - Accuracy: 0.7821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1465 | 0.97 | 16 | 1.8341 | 0.3462 | | 1.7722 | 2.0 | 33 | 1.5865 | 0.4017 | | 1.6005 | 2.97 | 49 | 1.4867 | 0.4060 | | 1.429 | 4.0 | 66 | 1.3933 | 0.4487 | | 1.2294 | 4.97 | 82 | 1.2696 | 0.5385 | | 1.1224 | 6.0 | 99 | 1.2842 | 0.5641 | | 0.9776 | 6.97 | 115 | 0.9923 | 0.6197 | | 0.8678 | 8.0 | 132 | 1.1118 | 0.6368 | | 0.8125 | 8.97 | 148 | 0.8974 | 0.6624 | | 0.7022 | 10.0 | 165 | 0.8582 | 0.6838 | | 0.6047 | 10.97 | 181 | 0.7019 | 0.7393 | | 0.6223 | 12.0 | 198 | 0.6818 | 0.7308 | | 0.5331 | 12.97 | 214 | 0.8265 | 0.7051 | | 0.4995 | 14.0 | 231 | 0.6365 | 0.7521 | | 0.4132 | 14.97 | 247 | 0.6585 | 0.7308 | | 0.3978 | 16.0 | 264 | 0.5789 | 0.7692 | | 0.3388 | 16.97 | 280 | 0.6038 | 0.7650 | | 0.3376 | 18.0 | 297 | 0.5306 | 0.7821 | | 0.3455 | 18.97 | 313 | 0.5797 | 0.7692 | | 0.3207 | 19.39 | 320 | 0.5657 | 0.7821 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3