update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss:
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,15 +60,32 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.782051282051282
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5657
|
35 |
+
- Accuracy: 0.7821
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 20
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.1465 | 0.97 | 16 | 1.8341 | 0.3462 |
|
70 |
+
| 1.7722 | 2.0 | 33 | 1.5865 | 0.4017 |
|
71 |
+
| 1.6005 | 2.97 | 49 | 1.4867 | 0.4060 |
|
72 |
+
| 1.429 | 4.0 | 66 | 1.3933 | 0.4487 |
|
73 |
+
| 1.2294 | 4.97 | 82 | 1.2696 | 0.5385 |
|
74 |
+
| 1.1224 | 6.0 | 99 | 1.2842 | 0.5641 |
|
75 |
+
| 0.9776 | 6.97 | 115 | 0.9923 | 0.6197 |
|
76 |
+
| 0.8678 | 8.0 | 132 | 1.1118 | 0.6368 |
|
77 |
+
| 0.8125 | 8.97 | 148 | 0.8974 | 0.6624 |
|
78 |
+
| 0.7022 | 10.0 | 165 | 0.8582 | 0.6838 |
|
79 |
+
| 0.6047 | 10.97 | 181 | 0.7019 | 0.7393 |
|
80 |
+
| 0.6223 | 12.0 | 198 | 0.6818 | 0.7308 |
|
81 |
+
| 0.5331 | 12.97 | 214 | 0.8265 | 0.7051 |
|
82 |
+
| 0.4995 | 14.0 | 231 | 0.6365 | 0.7521 |
|
83 |
+
| 0.4132 | 14.97 | 247 | 0.6585 | 0.7308 |
|
84 |
+
| 0.3978 | 16.0 | 264 | 0.5789 | 0.7692 |
|
85 |
+
| 0.3388 | 16.97 | 280 | 0.6038 | 0.7650 |
|
86 |
+
| 0.3376 | 18.0 | 297 | 0.5306 | 0.7821 |
|
87 |
+
| 0.3455 | 18.97 | 313 | 0.5797 | 0.7692 |
|
88 |
+
| 0.3207 | 19.39 | 320 | 0.5657 | 0.7821 |
|
89 |
|
90 |
|
91 |
### Framework versions
|