HITMYM commited on
Commit
1b7a3ee
·
1 Parent(s): 4e40fa0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -7
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.4017094017094017
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 1.4448
35
- - Accuracy: 0.4017
36
 
37
  ## Model description
38
 
@@ -60,15 +60,32 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 2.0067 | 0.97 | 16 | 1.7825 | 0.2393 |
70
- | 1.6122 | 2.0 | 33 | 1.4736 | 0.4274 |
71
- | 1.5137 | 2.91 | 48 | 1.4448 | 0.4017 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.782051282051282
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.5657
35
+ - Accuracy: 0.7821
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.1465 | 0.97 | 16 | 1.8341 | 0.3462 |
70
+ | 1.7722 | 2.0 | 33 | 1.5865 | 0.4017 |
71
+ | 1.6005 | 2.97 | 49 | 1.4867 | 0.4060 |
72
+ | 1.429 | 4.0 | 66 | 1.3933 | 0.4487 |
73
+ | 1.2294 | 4.97 | 82 | 1.2696 | 0.5385 |
74
+ | 1.1224 | 6.0 | 99 | 1.2842 | 0.5641 |
75
+ | 0.9776 | 6.97 | 115 | 0.9923 | 0.6197 |
76
+ | 0.8678 | 8.0 | 132 | 1.1118 | 0.6368 |
77
+ | 0.8125 | 8.97 | 148 | 0.8974 | 0.6624 |
78
+ | 0.7022 | 10.0 | 165 | 0.8582 | 0.6838 |
79
+ | 0.6047 | 10.97 | 181 | 0.7019 | 0.7393 |
80
+ | 0.6223 | 12.0 | 198 | 0.6818 | 0.7308 |
81
+ | 0.5331 | 12.97 | 214 | 0.8265 | 0.7051 |
82
+ | 0.4995 | 14.0 | 231 | 0.6365 | 0.7521 |
83
+ | 0.4132 | 14.97 | 247 | 0.6585 | 0.7308 |
84
+ | 0.3978 | 16.0 | 264 | 0.5789 | 0.7692 |
85
+ | 0.3388 | 16.97 | 280 | 0.6038 | 0.7650 |
86
+ | 0.3376 | 18.0 | 297 | 0.5306 | 0.7821 |
87
+ | 0.3455 | 18.97 | 313 | 0.5797 | 0.7692 |
88
+ | 0.3207 | 19.39 | 320 | 0.5657 | 0.7821 |
89
 
90
 
91
  ### Framework versions