medmekk HF staff commited on
Commit
716ec0d
·
verified ·
1 Parent(s): 2465824

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -128
README.md CHANGED
@@ -15,7 +15,6 @@ For a deeper dive into the methods and results, check out our [blog post](https:
15
 
16
  ## Model Details
17
 
18
-
19
  ### Model Sources
20
 
21
  <!-- Provide the basic links for the model. -->
@@ -23,39 +22,6 @@ For a deeper dive into the methods and results, check out our [blog post](https:
23
  - **Repository:** [Model](https://huggingface.co/HF1BitLLM/Llama3-8B-1.58-100B-tokens)
24
  - **Paper:** [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764)
25
 
26
- ## Uses
27
-
28
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
29
-
30
- ### Direct Use
31
-
32
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
33
-
34
- [More Information Needed]
35
-
36
- ### Downstream Use [optional]
37
-
38
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
39
-
40
- [More Information Needed]
41
-
42
- ### Out-of-Scope Use
43
-
44
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
45
-
46
- [More Information Needed]
47
-
48
- ## Bias, Risks, and Limitations
49
-
50
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Recommendations
55
-
56
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
57
-
58
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
59
 
60
  ## How to Get Started with the Model
61
 
@@ -71,7 +37,7 @@ input_ids = tokenizer.encode(input_text, return_tensors="pt").cuda()
71
  output = model.generate(input_ids, max_length=10, do_sample=False)
72
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
73
  print(generated_text)
74
-
75
 
76
  ## Training Details
77
 
@@ -79,112 +45,50 @@ print(generated_text)
79
 
80
  The model was trained on a subset of [FineWeb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
81
 
82
- [More Information Needed]
83
-
84
- ### Training Hyperparameters
85
-
86
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
87
-
88
- #### Speeds, Sizes, Times [optional]
89
-
90
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
91
-
92
- [More Information Needed]
93
-
94
- ## Evaluation
95
-
96
- <!-- This section describes the evaluation protocols and provides the results. -->
97
-
98
- ### Testing Data, Factors & Metrics
99
-
100
- #### Testing Data
101
-
102
- <!-- This should link to a Dataset Card if possible. -->
103
 
104
- [More Information Needed]
 
105
 
106
- #### Factors
 
 
107
 
108
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
109
 
110
- [More Information Needed]
 
 
 
111
 
112
- #### Metrics
 
113
 
114
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
115
 
116
- [More Information Needed]
 
117
 
118
- ### Results
119
 
120
- [More Information Needed]
121
 
122
- #### Summary
123
-
124
-
125
-
126
- ## Model Examination [optional]
127
-
128
- <!-- Relevant interpretability work for the model goes here -->
129
-
130
- [More Information Needed]
131
-
132
- ## Environmental Impact
133
-
134
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
135
-
136
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
137
-
138
- - **Hardware Type:** [More Information Needed]
139
- - **Hours used:** [More Information Needed]
140
- - **Cloud Provider:** [More Information Needed]
141
- - **Compute Region:** [More Information Needed]
142
- - **Carbon Emitted:** [More Information Needed]
143
-
144
- ## Technical Specifications [optional]
145
-
146
- ### Model Architecture and Objective
147
-
148
- [More Information Needed]
149
-
150
- ### Compute Infrastructure
151
-
152
- [More Information Needed]
153
-
154
- #### Hardware
155
-
156
- [More Information Needed]
157
-
158
- #### Software
159
-
160
- [More Information Needed]
161
-
162
- ## Citation [optional]
163
-
164
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
165
-
166
- **BibTeX:**
167
-
168
- [More Information Needed]
169
-
170
- **APA:**
171
-
172
- [More Information Needed]
173
-
174
- ## Glossary [optional]
175
-
176
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
177
-
178
- [More Information Needed]
179
 
180
- ## More Information [optional]
181
 
182
- [More Information Needed]
183
 
184
- ## Model Card Authors [optional]
185
 
186
- [More Information Needed]
187
 
188
- ## Model Card Contact
189
 
190
- [More Information Needed]
 
 
 
 
 
 
 
15
 
16
  ## Model Details
17
 
 
18
  ### Model Sources
19
 
20
  <!-- Provide the basic links for the model. -->
 
22
  - **Repository:** [Model](https://huggingface.co/HF1BitLLM/Llama3-8B-1.58-100B-tokens)
23
  - **Paper:** [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764)
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## How to Get Started with the Model
27
 
 
37
  output = model.generate(input_ids, max_length=10, do_sample=False)
38
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
39
  print(generated_text)
40
+ ```
41
 
42
  ## Training Details
43
 
 
45
 
46
  The model was trained on a subset of [FineWeb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
47
 
48
+ ### Training Process
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ 1. **Starting Point**
51
+ - Best-performing checkpoint from the 10 billion token runs with a linear lambda scheduler
52
 
53
+ 2. **Training Duration**
54
+ - Fine-tuned for an additional 45,000 steps
55
+ - Reached a total of 100 billion tokens
56
 
57
+ 3. **Dataset**
58
+ - FineWeb-edu dataset
59
 
60
+ 4. **Batch Size**
61
+ - 2 million tokens per step
62
+ - Total per run: 45,000 steps * 2 million tokens = 90 billion tokens
63
+ - Combined with initial 10 billion tokens to reach 100 billion
64
 
65
+ 5. **Learning Rate Experiments**
66
+ - Tested various learning rates to find optimal setting, according the to experiments, the best performing peak lr is 1e-5
67
 
68
+ 6. **Performance**
69
+ - Close to Llama3 8B on some metrics
70
+ - Behind Llama3 8B in overall average performance
71
 
72
+ 7. **Evaluation**
73
+ - Metrics included perplexity, MMLU scores, and other standard benchmarks
74
 
75
+ These extended training runs on 100 billion tokens pushed the boundaries of highly quantized models, bringing performance closer to half-precision models like Llama3.
76
 
 
77
 
78
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ The evaluation of the models is done on the nanotron checkpoints using LightEval :
81
 
82
+ ![results](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/1.58llm_extreme_quantization/metrics_100B_table.png)
83
 
 
84
 
 
85
 
86
+ ## Citation
87
 
88
+ ```bash
89
+ @misc{,
90
+ title={1.58-Bit LLM: A New Era of Extreme Quantization},
91
+ author={Mohamed Mekkouri and Marc Sun and Leandro von Werra and Thomas Wolf},
92
+ year={2024},
93
+ }
94
+ ```