--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-tiny-patch16-224-finetuned-main-gpu-20e-final results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9856292517006803 --- # deit-tiny-patch16-224-finetuned-main-gpu-20e-final This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0420 - Accuracy: 0.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6047 | 1.0 | 551 | 0.6283 | 0.7111 | | 0.431 | 2.0 | 1102 | 0.3962 | 0.8366 | | 0.352 | 3.0 | 1653 | 0.2620 | 0.8953 | | 0.2682 | 4.0 | 2204 | 0.1814 | 0.9318 | | 0.2533 | 5.0 | 2755 | 0.1564 | 0.9396 | | 0.2069 | 6.0 | 3306 | 0.1243 | 0.9531 | | 0.2065 | 7.0 | 3857 | 0.1048 | 0.9603 | | 0.194 | 8.0 | 4408 | 0.1019 | 0.9636 | | 0.1879 | 9.0 | 4959 | 0.0877 | 0.9671 | | 0.1584 | 10.0 | 5510 | 0.0870 | 0.9687 | | 0.1426 | 11.0 | 6061 | 0.0814 | 0.9718 | | 0.1596 | 12.0 | 6612 | 0.0740 | 0.9749 | | 0.1125 | 13.0 | 7163 | 0.0613 | 0.9781 | | 0.1374 | 14.0 | 7714 | 0.0570 | 0.9787 | | 0.1003 | 15.0 | 8265 | 0.0596 | 0.9793 | | 0.109 | 16.0 | 8816 | 0.0511 | 0.9815 | | 0.1206 | 17.0 | 9367 | 0.0497 | 0.9829 | | 0.1024 | 18.0 | 9918 | 0.0437 | 0.9844 | | 0.1051 | 19.0 | 10469 | 0.0420 | 0.9851 | | 0.0955 | 20.0 | 11020 | 0.0420 | 0.9856 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2