--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-kidneys results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Kidney Cancer split: train args: Kidney Cancer metrics: - name: Accuracy type: accuracy value: 1.0 --- # swin-kidneys This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0035 | 1.0 | 109 | 0.0001 | 1.0 | | 0.0001 | 2.0 | 219 | 0.0000 | 1.0 | | 0.0001 | 3.0 | 328 | 0.0011 | 0.9997 | | 0.0001 | 4.0 | 438 | 0.0000 | 1.0 | | 0.0 | 4.98 | 545 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3