Gofaone commited on
Commit
3502fdb
·
1 Parent(s): 928aff5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -7
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9996666666666667
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.0007
35
- - Accuracy: 0.9997
36
 
37
  ## Model description
38
 
@@ -60,15 +60,17 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 0.0 | 1.0 | 109 | 0.0007 | 0.9997 |
70
- | 0.0 | 2.0 | 219 | 0.0007 | 0.9997 |
71
- | 0.0002 | 2.99 | 327 | 0.0007 | 0.9997 |
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 1.0
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0000
35
+ - Accuracy: 1.0
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.0035 | 1.0 | 109 | 0.0001 | 1.0 |
70
+ | 0.0001 | 2.0 | 219 | 0.0000 | 1.0 |
71
+ | 0.0001 | 3.0 | 328 | 0.0011 | 0.9997 |
72
+ | 0.0001 | 4.0 | 438 | 0.0000 | 1.0 |
73
+ | 0.0 | 4.98 | 545 | 0.0000 | 1.0 |
74
 
75
 
76
  ### Framework versions