Safetensors
llama
orchid13 commited on
Commit
ca18579
·
verified ·
1 Parent(s): 7c7e8f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -13
README.md CHANGED
@@ -8,22 +8,20 @@ license: llama3
8
  base_model:
9
  - aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
10
  ---
11
- # Llama3 8B CPT Sahabat AI v1
12
-
13
- Sahabat AI v1 is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian languages.
14
- This is the card for the Llama3 8B CPT Sahabat AI v1 base model which has undergone continued pre-training from the [AI Singapore-Llama-3-8B-Sea-Lion v2.1-Instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) model.
15
-
16
- Sahabat is Indonesian for "Close Friends."
17
 
 
 
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
- The continued pre-training data for Llama3 8B CPT Sahabat AI v1 base model encompasses approximately 80B tokens.
24
 
25
  - **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
26
  - **Funded by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
 
27
  - **Model type:** Decoder
28
  - **Languages:** English, Indonesian, Javanese, Sundanese
29
  - **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
@@ -31,7 +29,7 @@ The continued pre-training data for Llama3 8B CPT Sahabat AI v1 base model encom
31
  For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
32
 
33
  ### Benchmark Performance
34
- We evaluated Llama 8B CPT Sahabat AI v1 base model on general language capabilities.
35
 
36
  #### General Language Capabilities
37
  For the evaluation of general language capabilities, we employed the
@@ -147,7 +145,7 @@ The evaluation was done **five-shot** with native prompts on a sample of 100-100
147
 
148
  ### Data
149
 
150
- Llama3 8B CPT Sahabat AI v1 base model was continued pre-trained on 50B tokens of the following data:
151
 
152
 
153
  | Data Source | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
@@ -171,10 +169,10 @@ Note:
171
 
172
  ### Infrastructure
173
 
174
- Llama 8B CPT Sahabat AI v1 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
175
  on the following hardware:
176
 
177
- | Training Details | Llama3 8B CPT Sahabat AI v1|
178
  |----------------------|:----------------------------:|
179
  | Nvidia H100 80GB GPU | 32 |
180
  | Training Duration | 5 days |
@@ -182,7 +180,7 @@ on the following hardware:
182
 
183
  ### Configuration
184
 
185
- | HyperParameter | Llama3 8B CPT Sahabat AI v1|
186
  |-------------------|:----------------------------:|
187
  | Precision | bfloat16 |
188
  | Optimizer | decoupled_adamw |
@@ -192,7 +190,28 @@ on the following hardware:
192
  | Micro Batch Size | 1 |
193
 
194
 
195
- ## The Team (by ascending alphabetical order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
  ### AI Singapore
198
  Chan Adwin<br>
 
8
  base_model:
9
  - aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
10
  ---
11
+ # Llama3 8B CPT Sahabat-AI v1
 
 
 
 
 
12
 
13
+ **Sahabat-AI** (Indonesian language for “close friends”) is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian language and its various dialects.
14
+ Sahabat-AI ecosystem is co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
+ The continued pre-training data for Llama3 8B CPT Sahabat-AI v1 base model encompasses approximately 80B tokens.
21
 
22
  - **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
23
  - **Funded by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
24
+ - **Supported by:** PT Indosat Ooredoo Hutchison
25
  - **Model type:** Decoder
26
  - **Languages:** English, Indonesian, Javanese, Sundanese
27
  - **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
 
29
  For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
30
 
31
  ### Benchmark Performance
32
+ We evaluated Llama 8B CPT Sahabat-AI v1 base model on general language capabilities.
33
 
34
  #### General Language Capabilities
35
  For the evaluation of general language capabilities, we employed the
 
145
 
146
  ### Data
147
 
148
+ Llama3 8B CPT Sahabat-AI v1 base model was continued pre-trained on 50B tokens of the following data:
149
 
150
 
151
  | Data Source | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
 
169
 
170
  ### Infrastructure
171
 
172
+ Llama 8B CPT Sahabat-AI v1 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
173
  on the following hardware:
174
 
175
+ | Training Details | Llama3 8B CPT Sahabat-AI v1|
176
  |----------------------|:----------------------------:|
177
  | Nvidia H100 80GB GPU | 32 |
178
  | Training Duration | 5 days |
 
180
 
181
  ### Configuration
182
 
183
+ | HyperParameter | Llama3 8B CPT Sahabat-AI v1|
184
  |-------------------|:----------------------------:|
185
  | Precision | bfloat16 |
186
  | Optimizer | decoupled_adamw |
 
190
  | Micro Batch Size | 1 |
191
 
192
 
193
+ ## Call for Collaboration
194
+
195
+ Sahabat-AI (Indonesian language for “close friends”) a **local open source Large Language Model (LLM) ecosystem in Indonesian language**, co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
196
+ Sahabat-AI ecosystem aims to empower Indonesians who want to develop AI-based services and applications using Bahasa Indonesia and its various local dialects.
197
+
198
+ We are supported by research centers and global tech experts such as AI Singapore and Tech Mahendra to train the model to gain general language understanding.
199
+
200
+ We also have collaborated with key top Indonesia universities such as University of Indonesia, Gadjah Mada University, Bogor Institute of Agriculture, Bandung Institute of Technology, including top Indonesia media groups, such as Kompas Media Group and Republika to train and enrich the model in Bahasa Indonesia, ensuring optimum provision of local context and cultural relevance.
201
+
202
+ We would like to invite **researchers, developers, and language enthusiasts** to actively contribute to the enhancement and expansion of Sahabat-AI.
203
+ Your collaborations can involve:
204
+ - Identifying and reporting technical issues
205
+ - Sharing pre-training, instruction, and preference data
206
+ - Improving documentation usability
207
+ - Proposing and implementing new model evaluation tasks and metrics
208
+
209
+ Join us in shaping the future of Sahabat-AI by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
210
+
211
+ You can contribute your ideas through [this form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
212
+
213
+
214
+ ## The Development Team (in ascending alphabetical order)
215
 
216
  ### AI Singapore
217
  Chan Adwin<br>