File size: 4,653 Bytes
53cb724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: finetuned_bart_large_custom
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_bart_large_custom

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.8324
- Rouge1: 39.9143
- Rouge2: 10.7144
- Rougel: 21.1537
- Rougelsum: 35.81
- Gen Len: 131.6667

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 1.0   | 16   | 4.3093          | 39.1367 | 9.9819  | 21.0796 | 35.3746   | 132.0741 |
| No log        | 2.0   | 32   | 4.2921          | 39.0619 | 9.8356  | 21.7437 | 35.6597   | 131.7037 |
| No log        | 3.0   | 48   | 4.3876          | 39.5314 | 10.337  | 21.0096 | 35.9973   | 131.2593 |
| No log        | 4.0   | 64   | 4.4020          | 39.3551 | 9.9689  | 21.4343 | 35.3958   | 131.1481 |
| No log        | 5.0   | 80   | 4.3744          | 39.7603 | 10.4124 | 21.6535 | 35.4996   | 132.963  |
| No log        | 6.0   | 96   | 4.4821          | 39.9859 | 11.0712 | 22.2449 | 35.7868   | 132.4074 |
| No log        | 7.0   | 112  | 4.6017          | 38.765  | 10.3317 | 20.9319 | 34.6675   | 132.2593 |
| No log        | 8.0   | 128  | 4.4419          | 39.9964 | 10.3341 | 20.9618 | 35.8621   | 130.2222 |
| No log        | 9.0   | 144  | 4.4990          | 39.8075 | 10.3829 | 21.3509 | 35.9882   | 128.7407 |
| No log        | 10.0  | 160  | 4.7017          | 38.6152 | 9.9282  | 20.4588 | 34.4487   | 131.9259 |
| No log        | 11.0  | 176  | 4.5497          | 39.0296 | 9.9429  | 20.8087 | 34.4624   | 132.6296 |
| No log        | 12.0  | 192  | 4.7301          | 38.8819 | 9.5937  | 20.929  | 34.7983   | 131.4444 |
| No log        | 13.0  | 208  | 4.5114          | 38.4163 | 9.6869  | 20.373  | 34.1491   | 123.8519 |
| No log        | 14.0  | 224  | 4.7097          | 38.4294 | 9.5615  | 20.1514 | 35.0332   | 131.7407 |
| No log        | 15.0  | 240  | 4.6300          | 38.9564 | 9.6386  | 20.0618 | 34.8298   | 129.963  |
| No log        | 16.0  | 256  | 4.6916          | 38.5582 | 10.136  | 20.8347 | 34.4795   | 129.8519 |
| No log        | 17.0  | 272  | 4.6959          | 38.3264 | 9.5281  | 20.5576 | 34.6148   | 128.2963 |
| No log        | 18.0  | 288  | 4.6756          | 37.5569 | 9.123   | 19.8291 | 33.5111   | 126.6667 |
| No log        | 19.0  | 304  | 4.7579          | 38.5704 | 9.3654  | 20.1826 | 34.8297   | 131.4815 |
| No log        | 20.0  | 320  | 4.8128          | 40.158  | 10.3889 | 20.9267 | 36.8965   | 130.1852 |
| No log        | 21.0  | 336  | 4.7659          | 39.4144 | 10.2445 | 20.4763 | 35.328    | 134.2593 |
| No log        | 22.0  | 352  | 4.7983          | 40.2859 | 11.0388 | 21.1643 | 36.0311   | 131.9259 |
| No log        | 23.0  | 368  | 4.7954          | 39.2676 | 10.5795 | 21.1116 | 35.3949   | 130.1481 |
| No log        | 24.0  | 384  | 4.7991          | 39.8126 | 10.3955 | 21.2952 | 35.7538   | 130.5926 |
| No log        | 25.0  | 400  | 4.8371          | 39.3481 | 10.2857 | 20.9862 | 35.1724   | 125.1481 |
| No log        | 26.0  | 416  | 4.8589          | 40.0988 | 10.4426 | 21.7284 | 35.7289   | 130.3333 |
| No log        | 27.0  | 432  | 4.8423          | 39.9233 | 10.3253 | 21.5853 | 36.1194   | 131.1111 |
| No log        | 28.0  | 448  | 4.8274          | 40.0388 | 10.1713 | 20.991  | 35.3966   | 130.4444 |
| No log        | 29.0  | 464  | 4.8313          | 39.8516 | 10.6207 | 21.0394 | 35.6627   | 130.8148 |
| No log        | 30.0  | 480  | 4.8324          | 39.9143 | 10.7144 | 21.1537 | 35.81     | 131.6667 |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1