File size: 4,570 Bytes
e34f4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
base_model: beogradjanka/bart_multitask_finetuned_for_title_and_keyphrase_generation
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: finetuned_bart_for_titlekeygen_custom
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_bart_for_titlekeygen_custom

This model is a fine-tuned version of [beogradjanka/bart_multitask_finetuned_for_title_and_keyphrase_generation](https://huggingface.co/beogradjanka/bart_multitask_finetuned_for_title_and_keyphrase_generation) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9518
- Rouge1: 27.1931
- Rouge2: 17.9025
- Rougel: 27.0914
- Rougelsum: 27.5983
- Gen Len: 10.4444

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 0.91  | 5    | 4.4910          | 24.613  | 15.7516 | 23.7302 | 24.6083   | 11.0    |
| No log        | 2.0   | 11   | 4.5644          | 23.1235 | 14.2857 | 22.4578 | 23.0522   | 9.0     |
| No log        | 2.91  | 16   | 4.6286          | 24.7078 | 15.2652 | 24.7869 | 25.2108   | 10.0556 |
| No log        | 4.0   | 22   | 4.6774          | 24.5206 | 17.2336 | 24.3437 | 25.1579   | 10.5    |
| No log        | 4.91  | 27   | 4.7187          | 26.304  | 18.2158 | 26.3307 | 26.814    | 10.2778 |
| No log        | 6.0   | 33   | 4.7962          | 26.7873 | 17.4056 | 26.8439 | 27.3369   | 10.1667 |
| No log        | 6.91  | 38   | 4.8356          | 26.9721 | 17.3677 | 26.9926 | 27.5469   | 10.0556 |
| No log        | 8.0   | 44   | 4.7903          | 28.0369 | 17.3677 | 28.1825 | 28.5073   | 10.0    |
| No log        | 8.91  | 49   | 4.7801          | 27.1885 | 17.6215 | 26.6686 | 27.0771   | 10.1111 |
| No log        | 10.0  | 55   | 4.8049          | 27.1885 | 17.6215 | 26.6686 | 27.0771   | 10.1667 |
| No log        | 10.91 | 60   | 4.9275          | 26.8226 | 17.9025 | 26.8217 | 27.2015   | 10.0    |
| No log        | 12.0  | 66   | 4.9744          | 26.8226 | 17.9025 | 26.8217 | 27.2015   | 10.1111 |
| No log        | 12.91 | 71   | 4.9863          | 26.0231 | 17.9025 | 26.0376 | 26.3104   | 10.0    |
| No log        | 14.0  | 77   | 4.9497          | 24.9154 | 17.2851 | 25.0693 | 25.3933   | 9.8333  |
| No log        | 14.91 | 82   | 4.9272          | 24.5615 | 17.037  | 24.4986 | 25.0688   | 10.0556 |
| No log        | 16.0  | 88   | 4.9417          | 25.307  | 17.037  | 25.3656 | 25.9459   | 10.0    |
| No log        | 16.91 | 93   | 4.9712          | 26.7457 | 17.9025 | 26.7271 | 27.1185   | 9.9444  |
| No log        | 18.0  | 99   | 4.9649          | 25.9581 | 17.9025 | 25.9478 | 26.2429   | 10.0556 |
| No log        | 18.91 | 104  | 4.9305          | 27.0746 | 17.9025 | 26.9536 | 27.4569   | 10.6111 |
| No log        | 20.0  | 110  | 4.9212          | 27.9706 | 18.5997 | 27.2022 | 27.7873   | 10.8889 |
| No log        | 20.91 | 115  | 4.9196          | 27.7549 | 18.8225 | 27.5716 | 28.1145   | 10.6667 |
| No log        | 22.0  | 121  | 4.9316          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.4444 |
| No log        | 22.91 | 126  | 4.9525          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.2222 |
| No log        | 24.0  | 132  | 4.9590          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.2222 |
| No log        | 24.91 | 137  | 4.9545          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.2222 |
| No log        | 26.0  | 143  | 4.9514          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.4444 |
| No log        | 26.91 | 148  | 4.9515          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.4444 |
| No log        | 27.27 | 150  | 4.9518          | 27.1931 | 17.9025 | 27.0914 | 27.5983   | 10.4444 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1