File size: 20,495 Bytes
6d70ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Copyright 2023 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for xarray_jax."""

from absl.testing import absltest
import chex
from graphcast import xarray_jax
import jax
import jax.numpy as jnp
import numpy as np
import xarray


class XarrayJaxTest(absltest.TestCase):

  def test_jax_array_wrapper_with_numpy_api(self):
    # This is just a side benefit of making things work with xarray, but the
    # JaxArrayWrapper does allow you to manipulate JAX arrays using the
    # standard numpy API, without converting them to numpy in the process:
    ones = jnp.ones((3, 4), dtype=np.float32)
    x = xarray_jax.JaxArrayWrapper(ones)
    x = np.abs((x + 2) * (x - 3))
    x = x[:-1, 1:3]
    x = np.concatenate([x, x + 1], axis=0)
    x = np.transpose(x, (1, 0))
    x = np.reshape(x, (-1,))
    x = x.astype(np.int32)
    self.assertIsInstance(x, xarray_jax.JaxArrayWrapper)
    # An explicit conversion gets us out of JAX-land however:
    self.assertIsInstance(np.asarray(x), np.ndarray)

  def test_jax_xarray_variable(self):
    def ops_via_xarray(inputs):
      x = xarray_jax.Variable(('lat', 'lon'), inputs)
      # We'll apply a sequence of operations just to test that the end result is
      # still a JAX array, i.e. we haven't converted to numpy at any point.
      x = np.abs((x + 2) * (x - 3))
      x = x.isel({'lat': slice(0, -1), 'lon': slice(1, 3)})
      x = xarray.Variable.concat([x, x + 1], dim='lat')
      x = x.transpose('lon', 'lat')
      x = x.stack(channels=('lon', 'lat'))
      x = x.sum()
      return xarray_jax.jax_data(x)

    # Check it doesn't leave jax-land when passed concrete values:
    ones = jnp.ones((3, 4), dtype=np.float32)
    result = ops_via_xarray(ones)
    self.assertIsInstance(result, jax.Array)

    # And that you can JIT it and compute gradients through it. These will
    # involve passing jax tracers through the xarray computation:
    jax.jit(ops_via_xarray)(ones)
    jax.grad(ops_via_xarray)(ones)

  def test_jax_xarray_data_array(self):
    def ops_via_xarray(inputs):
      x = xarray_jax.DataArray(dims=('lat', 'lon'),
                               data=inputs,
                               coords={'lat': np.arange(3) * 10,
                                       'lon': np.arange(4) * 10})
      x = np.abs((x + 2) * (x - 3))
      x = x.sel({'lat': slice(0, 20)})
      y = xarray_jax.DataArray(dims=('lat', 'lon'),
                               data=ones,
                               coords={'lat': np.arange(3, 6) * 10,
                                       'lon': np.arange(4) * 10})
      x = xarray.concat([x, y], dim='lat')
      x = x.transpose('lon', 'lat')
      x = x.stack(channels=('lon', 'lat'))
      x = x.unstack()
      x = x.sum()
      return xarray_jax.jax_data(x)

    ones = jnp.ones((3, 4), dtype=np.float32)
    result = ops_via_xarray(ones)
    self.assertIsInstance(result, jax.Array)

    jax.jit(ops_via_xarray)(ones)
    jax.grad(ops_via_xarray)(ones)

  def test_jax_xarray_dataset(self):
    def ops_via_xarray(foo, bar):
      x = xarray_jax.Dataset(
          data_vars={'foo': (('lat', 'lon'), foo),
                     'bar': (('time', 'lat', 'lon'), bar)},
          coords={
              'time': np.arange(2),
              'lat': np.arange(3) * 10,
              'lon': np.arange(4) * 10})
      x = np.abs((x + 2) * (x - 3))
      x = x.sel({'lat': slice(0, 20)})
      y = xarray_jax.Dataset(
          data_vars={'foo': (('lat', 'lon'), foo),
                     'bar': (('time', 'lat', 'lon'), bar)},
          coords={
              'time': np.arange(2),
              'lat': np.arange(3, 6) * 10,
              'lon': np.arange(4) * 10})
      x = xarray.concat([x, y], dim='lat')
      x = x.transpose('lon', 'lat', 'time')
      x = x.stack(channels=('lon', 'lat'))
      x = (x.foo + x.bar).sum()
      return xarray_jax.jax_data(x)

    foo = jnp.ones((3, 4), dtype=np.float32)
    bar = jnp.ones((2, 3, 4), dtype=np.float32)
    result = ops_via_xarray(foo, bar)
    self.assertIsInstance(result, jax.Array)

    jax.jit(ops_via_xarray)(foo, bar)
    jax.grad(ops_via_xarray)(foo, bar)

  def test_jit_function_with_xarray_variable_arguments_and_return(self):
    function = jax.jit(lambda v: v + 1)
    with self.subTest('jax input'):
      inputs = xarray_jax.Variable(
          ('lat', 'lon'), jnp.ones((3, 4), dtype=np.float32))
      _ = function(inputs)
      # We test running the jitted function a second time, to exercise logic in
      # jax which checks if the structure of the inputs (including dimension
      # names and coordinates) is the same as it was for the previous call and
      # so whether it needs to re-trace-and-compile a new version of the
      # function or not. This can run into problems if the 'aux' structure
      # returned by the registered flatten function is not hashable/comparable.
      outputs = function(inputs)
      self.assertEqual(outputs.dims, inputs.dims)
    with self.subTest('numpy input'):
      inputs = xarray.Variable(
          ('lat', 'lon'), np.ones((3, 4), dtype=np.float32))
      _ = function(inputs)
      outputs = function(inputs)
      self.assertEqual(outputs.dims, inputs.dims)

  def test_jit_problem_if_convert_to_plain_numpy_array(self):
    inputs = xarray_jax.DataArray(
        data=jnp.ones((2,), dtype=np.float32), dims=('foo',))
    with self.assertRaises(jax.errors.TracerArrayConversionError):
      # Calling .values on a DataArray converts its values to numpy:
      jax.jit(lambda data_array: data_array.values)(inputs)

  def test_grad_function_with_xarray_variable_arguments(self):
    x = xarray_jax.Variable(('lat', 'lon'), jnp.ones((3, 4), dtype=np.float32))
    # For grad we still need a JAX scalar as the output:
    jax.grad(lambda v: xarray_jax.jax_data(v.sum()))(x)

  def test_jit_function_with_xarray_data_array_arguments_and_return(self):
    inputs = xarray_jax.DataArray(
        data=jnp.ones((3, 4), dtype=np.float32),
        dims=('lat', 'lon'),
        coords={'lat': np.arange(3),
                'lon': np.arange(4) * 10})
    fn = jax.jit(lambda v: v + 1)
    _ = fn(inputs)
    outputs = fn(inputs)
    self.assertEqual(outputs.dims, inputs.dims)
    chex.assert_trees_all_equal(outputs.coords, inputs.coords)

  def test_jit_function_with_data_array_and_jax_coords(self):
    inputs = xarray_jax.DataArray(
        data=jnp.ones((3, 4), dtype=np.float32),
        dims=('lat', 'lon'),
        coords={'lat': np.arange(3)},
        jax_coords={'lon': jnp.arange(4) * 10})
    # Verify the jax_coord 'lon' retains jax data, and has not been created
    # as an index coordinate:
    self.assertIsInstance(inputs.coords['lon'].data, xarray_jax.JaxArrayWrapper)
    self.assertNotIn('lon', inputs.indexes)

    @jax.jit
    def fn(v):
      # The non-JAX coord is passed with numpy array data and an index:
      self.assertIsInstance(v.coords['lat'].data, np.ndarray)
      self.assertIn('lat', v.indexes)

      # The jax_coord is passed with JAX array data:
      self.assertIsInstance(v.coords['lon'].data, xarray_jax.JaxArrayWrapper)
      self.assertNotIn('lon', v.indexes)

      # Use the jax coord in the computation:
      v = v + v.coords['lon']

      # Return with an updated jax coord:
      return xarray_jax.assign_jax_coords(v, lon=v.coords['lon'] + 1)

    _ = fn(inputs)
    outputs = fn(inputs)

    # Verify the jax_coord 'lon' has jax data in the output too:
    self.assertIsInstance(
        outputs.coords['lon'].data, xarray_jax.JaxArrayWrapper)
    self.assertNotIn('lon', outputs.indexes)

    self.assertEqual(outputs.dims, inputs.dims)
    chex.assert_trees_all_equal(outputs.coords['lat'], inputs.coords['lat'])
    # Check our computations with the coordinate values worked:
    chex.assert_trees_all_equal(
        outputs.coords['lon'].data, (inputs.coords['lon']+1).data)
    chex.assert_trees_all_equal(
        outputs.data, (inputs + inputs.coords['lon']).data)

  def test_jit_function_with_xarray_dataset_arguments_and_return(self):
    foo = jnp.ones((3, 4), dtype=np.float32)
    bar = jnp.ones((2, 3, 4), dtype=np.float32)
    inputs = xarray_jax.Dataset(
        data_vars={'foo': (('lat', 'lon'), foo),
                   'bar': (('time', 'lat', 'lon'), bar)},
        coords={
            'time': np.arange(2),
            'lat': np.arange(3) * 10,
            'lon': np.arange(4) * 10})
    fn = jax.jit(lambda v: v + 1)
    _ = fn(inputs)
    outputs = fn(inputs)
    self.assertEqual({'foo', 'bar'}, outputs.data_vars.keys())
    self.assertEqual(inputs.foo.dims, outputs.foo.dims)
    self.assertEqual(inputs.bar.dims, outputs.bar.dims)
    chex.assert_trees_all_equal(outputs.coords, inputs.coords)

  def test_jit_function_with_dataset_and_jax_coords(self):
    foo = jnp.ones((3, 4), dtype=np.float32)
    bar = jnp.ones((2, 3, 4), dtype=np.float32)
    inputs = xarray_jax.Dataset(
        data_vars={'foo': (('lat', 'lon'), foo),
                   'bar': (('time', 'lat', 'lon'), bar)},
        coords={
            'time': np.arange(2),
            'lat': np.arange(3) * 10,
        },
        jax_coords={'lon': jnp.arange(4) * 10}
    )
    # Verify the jax_coord 'lon' retains jax data, and has not been created
    # as an index coordinate:
    self.assertIsInstance(inputs.coords['lon'].data, xarray_jax.JaxArrayWrapper)
    self.assertNotIn('lon', inputs.indexes)

    @jax.jit
    def fn(v):
      # The non-JAX coords are passed with numpy array data and an index:
      self.assertIsInstance(v.coords['lat'].data, np.ndarray)
      self.assertIn('lat', v.indexes)

      # The jax_coord is passed with JAX array data:
      self.assertIsInstance(v.coords['lon'].data, xarray_jax.JaxArrayWrapper)
      self.assertNotIn('lon', v.indexes)

      # Use the jax coord in the computation:
      v = v + v.coords['lon']

      # Return with an updated jax coord:
      return xarray_jax.assign_jax_coords(v, lon=v.coords['lon'] + 1)

    _ = fn(inputs)
    outputs = fn(inputs)

    # Verify the jax_coord 'lon' has jax data in the output too:
    self.assertIsInstance(
        outputs.coords['lon'].data, xarray_jax.JaxArrayWrapper)
    self.assertNotIn('lon', outputs.indexes)

    self.assertEqual(outputs.dims, inputs.dims)
    chex.assert_trees_all_equal(outputs.coords['lat'], inputs.coords['lat'])
    # Check our computations with the coordinate values worked:
    chex.assert_trees_all_equal(
        (outputs.coords['lon']).data,
        (inputs.coords['lon']+1).data,
    )
    outputs_dict = {key: outputs[key].data for key in outputs}
    inputs_and_inputs_coords_dict = {
        key: (inputs + inputs.coords['lon'])[key].data
        for key in inputs + inputs.coords['lon']
    }
    chex.assert_trees_all_equal(outputs_dict, inputs_and_inputs_coords_dict)

  def test_flatten_unflatten_variable(self):
    variable = xarray_jax.Variable(
        ('lat', 'lon'), jnp.ones((3, 4), dtype=np.float32))
    children, aux = xarray_jax._flatten_variable(variable)
    # Check auxiliary info is hashable/comparable (important for jax.jit):
    hash(aux)
    self.assertEqual(aux, aux)
    roundtrip = xarray_jax._unflatten_variable(aux, children)
    self.assertTrue(variable.equals(roundtrip))

  def test_flatten_unflatten_data_array(self):
    data_array = xarray_jax.DataArray(
        data=jnp.ones((3, 4), dtype=np.float32),
        dims=('lat', 'lon'),
        coords={'lat': np.arange(3)},
        jax_coords={'lon': np.arange(4) * 10},
    )
    children, aux = xarray_jax._flatten_data_array(data_array)
    # Check auxiliary info is hashable/comparable (important for jax.jit):
    hash(aux)
    self.assertEqual(aux, aux)
    roundtrip = xarray_jax._unflatten_data_array(aux, children)
    self.assertTrue(data_array.equals(roundtrip))

  def test_flatten_unflatten_dataset(self):
    foo = jnp.ones((3, 4), dtype=np.float32)
    bar = jnp.ones((2, 3, 4), dtype=np.float32)
    dataset = xarray_jax.Dataset(
        data_vars={'foo': (('lat', 'lon'), foo),
                   'bar': (('time', 'lat', 'lon'), bar)},
        coords={
            'time': np.arange(2),
            'lat': np.arange(3) * 10},
        jax_coords={
            'lon': np.arange(4) * 10})
    children, aux = xarray_jax._flatten_dataset(dataset)
    # Check auxiliary info is hashable/comparable (important for jax.jit):
    hash(aux)
    self.assertEqual(aux, aux)
    roundtrip = xarray_jax._unflatten_dataset(aux, children)
    self.assertTrue(dataset.equals(roundtrip))

  def test_flatten_unflatten_added_dim(self):
    data_array = xarray_jax.DataArray(
        data=jnp.ones((3, 4), dtype=np.float32),
        dims=('lat', 'lon'),
        coords={'lat': np.arange(3),
                'lon': np.arange(4) * 10})
    leaves, treedef = jax.tree_util.tree_flatten(data_array)
    leaves = [jnp.expand_dims(x, 0) for x in leaves]
    with xarray_jax.dims_change_on_unflatten(lambda dims: ('new',) + dims):
      with_new_dim = jax.tree_util.tree_unflatten(treedef, leaves)
    self.assertEqual(('new', 'lat', 'lon'), with_new_dim.dims)
    xarray.testing.assert_identical(
        jax.device_get(data_array),
        jax.device_get(with_new_dim.isel(new=0)))

  def test_map_added_dim(self):
    data_array = xarray_jax.DataArray(
        data=jnp.ones((3, 4), dtype=np.float32),
        dims=('lat', 'lon'),
        coords={'lat': np.arange(3),
                'lon': np.arange(4) * 10})
    with xarray_jax.dims_change_on_unflatten(lambda dims: ('new',) + dims):
      with_new_dim = jax.tree_util.tree_map(lambda x: jnp.expand_dims(x, 0),
                                            data_array)
    self.assertEqual(('new', 'lat', 'lon'), with_new_dim.dims)
    xarray.testing.assert_identical(
        jax.device_get(data_array),
        jax.device_get(with_new_dim.isel(new=0)))

  def test_map_remove_dim(self):
    foo = jnp.ones((1, 3, 4), dtype=np.float32)
    bar = jnp.ones((1, 2, 3, 4), dtype=np.float32)
    dataset = xarray_jax.Dataset(
        data_vars={'foo': (('batch', 'lat', 'lon'), foo),
                   'bar': (('batch', 'time', 'lat', 'lon'), bar)},
        coords={
            'batch': np.array([123]),
            'time': np.arange(2),
            'lat': np.arange(3) * 10,
            'lon': np.arange(4) * 10})
    with xarray_jax.dims_change_on_unflatten(lambda dims: dims[1:]):
      with_removed_dim = jax.tree_util.tree_map(lambda x: jnp.squeeze(x, 0),
                                                dataset)
    self.assertEqual(('lat', 'lon'), with_removed_dim['foo'].dims)
    self.assertEqual(('time', 'lat', 'lon'), with_removed_dim['bar'].dims)
    self.assertNotIn('batch', with_removed_dim.dims)
    self.assertNotIn('batch', with_removed_dim.coords)
    xarray.testing.assert_identical(
        jax.device_get(dataset.isel(batch=0, drop=True)),
        jax.device_get(with_removed_dim))

  def test_pmap(self):
    devices = jax.local_device_count()
    foo = jnp.zeros((devices, 3, 4), dtype=np.float32)
    bar = jnp.zeros((devices, 2, 3, 4), dtype=np.float32)
    dataset = xarray_jax.Dataset({
        'foo': (('device', 'lat', 'lon'), foo),
        'bar': (('device', 'time', 'lat', 'lon'), bar)})

    def func(d):
      self.assertNotIn('device', d.dims)
      return d + 1
    func = xarray_jax.pmap(func, dim='device')

    result = func(dataset)
    xarray.testing.assert_identical(
        jax.device_get(dataset + 1),
        jax.device_get(result))

    # Can call it again with a different argument structure (it will recompile
    # under the hood but should work):
    dataset = dataset.drop_vars('foo')
    result = func(dataset)
    xarray.testing.assert_identical(
        jax.device_get(dataset + 1),
        jax.device_get(result))

  def test_pmap_with_jax_coords(self):
    devices = jax.local_device_count()
    foo = jnp.zeros((devices, 3, 4), dtype=np.float32)
    bar = jnp.zeros((devices, 2, 3, 4), dtype=np.float32)
    time = jnp.zeros((devices, 2), dtype=np.float32)
    dataset = xarray_jax.Dataset(
        {'foo': (('device', 'lat', 'lon'), foo),
         'bar': (('device', 'time', 'lat', 'lon'), bar)},
        coords={
            'lat': np.arange(3),
            'lon': np.arange(4),
        },
        jax_coords={
            # Currently any jax_coords need a leading device dimension to use
            # with pmap, same as for data_vars.
            # TODO(matthjw): have pmap automatically broadcast to all devices
            # where the device dimension not present.
            'time': xarray_jax.Variable(('device', 'time'), time),
        }
    )

    def func(d):
      self.assertNotIn('device', d.dims)
      self.assertNotIn('device', d.coords['time'].dims)

      # The jax_coord 'time' should be passed in backed by a JAX array, but
      # not as an index coordinate.
      self.assertIsInstance(d.coords['time'].data, xarray_jax.JaxArrayWrapper)
      self.assertNotIn('time', d.indexes)

      return d + 1
    func = xarray_jax.pmap(func, dim='device')

    result = func(dataset)
    xarray.testing.assert_identical(
        jax.device_get(dataset + 1),
        jax.device_get(result))

    # Can call it again with a different argument structure (it will recompile
    # under the hood but should work):
    dataset = dataset.drop_vars('foo')
    result = func(dataset)
    xarray.testing.assert_identical(
        jax.device_get(dataset + 1),
        jax.device_get(result))

  def test_pmap_with_tree_mix_of_xarray_and_jax_array(self):
    devices = jax.local_device_count()
    data_array = xarray_jax.DataArray(
        data=jnp.ones((devices, 3, 4), dtype=np.float32),
        dims=('device', 'lat', 'lon'))
    plain_array = jnp.ones((devices, 2), dtype=np.float32)
    inputs = {'foo': data_array,
              'bar': plain_array}

    def func(x):
      return x['foo'] + 1, x['bar'] + 1

    func = xarray_jax.pmap(func, dim='device')
    result_foo, result_bar = func(inputs)
    xarray.testing.assert_identical(
        jax.device_get(inputs['foo'] + 1),
        jax.device_get(result_foo))
    np.testing.assert_array_equal(
        jax.device_get(inputs['bar'] + 1),
        jax.device_get(result_bar))

  def test_pmap_complains_when_dim_not_first(self):
    devices = jax.local_device_count()
    data_array = xarray_jax.DataArray(
        data=jnp.ones((3, devices, 4), dtype=np.float32),
        dims=('lat', 'device', 'lon'))

    func = xarray_jax.pmap(lambda x: x+1, dim='device')
    with self.assertRaisesRegex(
        ValueError, 'Expected dim device at index 0, found at 1'):
      func(data_array)

  def test_apply_ufunc(self):
    inputs = xarray_jax.DataArray(
        data=jnp.asarray([[1, 2], [3, 4]]),
        dims=('x', 'y'),
        coords={'x': [0, 1],
                'y': [2, 3]})
    result = xarray_jax.apply_ufunc(
        lambda x: jnp.sum(x, axis=-1),
        inputs,
        input_core_dims=[['x']])
    expected_result = xarray_jax.DataArray(
        data=[4, 6],
        dims=('y',),
        coords={'y': [2, 3]})
    xarray.testing.assert_identical(expected_result, jax.device_get(result))

  def test_apply_ufunc_multiple_return_values(self):
    def ufunc(array):
      return jnp.min(array, axis=-1), jnp.max(array, axis=-1)
    inputs = xarray_jax.DataArray(
        data=jnp.asarray([[1, 4], [3, 2]]),
        dims=('x', 'y'),
        coords={'x': [0, 1],
                'y': [2, 3]})
    result = xarray_jax.apply_ufunc(
        ufunc, inputs, input_core_dims=[['x']], output_core_dims=[[], []])
    expected = (
        # Mins:
        xarray_jax.DataArray(
            data=[1, 2],
            dims=('y',),
            coords={'y': [2, 3]}
        ),
        # Maxes:
        xarray_jax.DataArray(
            data=[3, 4],
            dims=('y',),
            coords={'y': [2, 3]}
        )
    )
    xarray.testing.assert_identical(expected[0], jax.device_get(result[0]))
    xarray.testing.assert_identical(expected[1], jax.device_get(result[1]))

if __name__ == '__main__':
  absltest.main()