File size: 24,598 Bytes
6d70ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# Copyright 2023 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Computes TOA incident solar radiation compatible with ERA5.

The Top-Of-the-Atmosphere (TOA) incident solar radiation is available in the
ERA5 dataset as the parameter `toa_incident_solar_radiation` (or `tisr`). This
represents the TOA solar radiation flux integrated over a period of one hour
ending at the timestamp given by the `datetime` coordinate. See
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation and
https://codes.ecmwf.int/grib/param-db/?id=212.
"""

from collections.abc import Callable, Sequence
import dataclasses
import functools

import chex
import jax
import jax.numpy as jnp
import numpy as np
import pandas as pd
import xarray as xa


# Default value of the `integration_period` argument to be compatible with ERA5.
_DEFAULT_INTEGRATION_PERIOD = pd.Timedelta(hours=1)

# Default value for the `num_integration_bins` argument. This provides a good
# approximation of the solar radiation in ERA5.
_DEFAULT_NUM_INTEGRATION_BINS = 360

# The length of a Julian year in days.
# https://en.wikipedia.org/wiki/Julian_year_(astronomy)
_JULIAN_YEAR_LENGTH_IN_DAYS = 365.25

# Julian Date for the J2000 epoch, a standard reference used in astronomy.
# https://en.wikipedia.org/wiki/Epoch_(astronomy)#Julian_years_and_J2000
_J2000_EPOCH = 2451545.0

# Number of seconds in a day.
_SECONDS_PER_DAY = 60 * 60 * 24


_TimestampLike = str | pd.Timestamp | np.datetime64
_TimedeltaLike = str | pd.Timedelta | np.timedelta64


# Interface for loading Total Solar Irradiance (TSI) data.
# Returns a xa.DataArray containing yearly average TSI values with a `time`
# coordinate in units of years since 0000-1-1. E.g. 2023.5 corresponds to
# the middle of the year 2023.
TsiDataLoader = Callable[[], xa.DataArray]


# Total Solar Irradiance (TSI): Energy input to the top of the Earth's
# atmosphere in W⋅m⁻². TSI varies with time. This is the reference TSI value
# that can be used when more accurate data is not available.
# https://www.ncei.noaa.gov/products/climate-data-records/total-solar-irradiance
# https://github.com/ecmwf-ifs/ecrad/blob/6db82f929fb75028cc20606a04da87c0abe9b642/radiation/radiation_ecckd.F90#L296
_REFERENCE_TSI = 1361.0


def reference_tsi_data() -> xa.DataArray:
  """A TsiDataProvider that returns a single reference TSI value."""
  return xa.DataArray(
      np.array([_REFERENCE_TSI]),
      dims=["time"],
      coords={"time": np.array([0.0])},
  )


def era5_tsi_data() -> xa.DataArray:
  """A TsiDataProvider that returns ERA5 compatible TSI data."""
  # ECMWF provided the data used for ERA5, which was hardcoded in the IFS (cycle
  # 41r2). The values were scaled down to agree better with more recent
  # observations of the sun.
  time = np.arange(1951.5, 2035.5, 1.0)
  tsi = 0.9965 * np.array([
      # fmt: off
      # 1951-1995 (non-repeating sequence)
      1365.7765, 1365.7676, 1365.6284, 1365.6564, 1365.7773,
      1366.3109, 1366.6681, 1366.6328, 1366.3828, 1366.2767,
      1365.9199, 1365.7484, 1365.6963, 1365.6976, 1365.7341,
      1365.9178, 1366.1143, 1366.1644, 1366.2476, 1366.2426,
      1365.9580, 1366.0525, 1365.7991, 1365.7271, 1365.5345,
      1365.6453, 1365.8331, 1366.2747, 1366.6348, 1366.6482,
      1366.6951, 1366.2859, 1366.1992, 1365.8103, 1365.6416,
      1365.6379, 1365.7899, 1366.0826, 1366.6479, 1366.5533,
      1366.4457, 1366.3021, 1366.0286, 1365.7971, 1365.6996,
      # 1996-2008 (13 year cycle, repeated below)
      1365.6121, 1365.7399, 1366.1021, 1366.3851, 1366.6836,
      1366.6022, 1366.6807, 1366.2300, 1366.0480, 1365.8545,
      1365.8107, 1365.7240, 1365.6918,
      # 2009-2021
      1365.6121, 1365.7399, 1366.1021, 1366.3851, 1366.6836,
      1366.6022, 1366.6807, 1366.2300, 1366.0480, 1365.8545,
      1365.8107, 1365.7240, 1365.6918,
      # 2022-2034
      1365.6121, 1365.7399, 1366.1021, 1366.3851, 1366.6836,
      1366.6022, 1366.6807, 1366.2300, 1366.0480, 1365.8545,
      1365.8107, 1365.7240, 1365.6918,
      # fmt: on
  ])
  return xa.DataArray(tsi, dims=["time"], coords={"time": time})


# HRES compatible TSI data is from IFS cycle 47r1. The dataset can be obtained
# from the ECRAD package: https://confluence.ecmwf.int/display/ECRAD.
# The example code below can load this dataset from a local file.

# def hres_tsi_data() -> xa.DataArray:
#   with open("total_solar_irradiance_CMIP6_47r1.nc", "rb") as f:
#     with xa.load_dataset(f, decode_times=False) as ds:
#       return ds["tsi"]


_DEFAULT_TSI_DATA_LOADER: TsiDataLoader = era5_tsi_data


def get_tsi(
    timestamps: Sequence[_TimestampLike], tsi_data: xa.DataArray
) -> chex.Array:
  """Returns TSI values for the given timestamps.

  TSI values are interpolated from the provided yearly TSI data.

  Args:
    timestamps: Timestamps for which to compute TSI values.
    tsi_data: A DataArray with a single dimension `time` that has coordinates in
      units of years since 0000-1-1. E.g. 2023.5 corresponds to the middle of
      the year 2023.

  Returns:
    An Array containing interpolated TSI data.
  """
  timestamps = pd.DatetimeIndex(timestamps)
  timestamps_date = pd.DatetimeIndex(timestamps.date)
  day_fraction = (timestamps - timestamps_date) / pd.Timedelta(days=1)
  year_length = 365 + timestamps.is_leap_year
  year_fraction = (timestamps.dayofyear - 1 + day_fraction) / year_length
  fractional_year = timestamps.year + year_fraction
  return np.interp(fractional_year, tsi_data.coords["time"].data, tsi_data.data)


@dataclasses.dataclass(frozen=True)
class _OrbitalParameters:
  """Parameters characterising Earth's position relative to the Sun.

  The parameters characterize the position of the Earth in its orbit around the
  Sun for specific points in time. Each attribute is an N-dimensional array
  to represent orbital parameters for multiple points in time.

  Attributes:
    theta: The number of Julian years since the Julian epoch J2000.0.
    rotational_phase: The phase of the Earth's rotation along its axis as a
      ratio with 0 representing the phase at Julian epoch J2000.0 at exactly
      12:00 Terrestrial Time (TT). Multiplying this value by `2*pi` yields the
        phase in radians.
    sin_declination: Sine of the declination of the Sun as seen from the Earth.
    cos_declination: Cosine of the declination of the Sun as seen from the
      Earth.
    eq_of_time_seconds: The value of the equation of time, in seconds.
    solar_distance_au: Earth-Sun distance in astronomical units.
  """

  theta: chex.Array
  rotational_phase: chex.Array
  sin_declination: chex.Array
  cos_declination: chex.Array
  eq_of_time_seconds: chex.Array
  solar_distance_au: chex.Array


def _get_j2000_days(timestamp: pd.Timestamp) -> float:
  """Returns the number of days since the J2000 epoch.

  Args:
    timestamp: A timestamp for which to compute the J2000 days.

  Returns:
    The J2000 days corresponding to the input timestamp.
  """
  return timestamp.to_julian_date() - _J2000_EPOCH


def _get_orbital_parameters(j2000_days: chex.Array) -> _OrbitalParameters:
  """Computes the orbital parameters for the given J2000 days.

  Args:
    j2000_days: Timestamps represented as the number of days since the J2000
      epoch.

  Returns:
    Orbital parameters for the given timestamps. Each attribute of the return
    value is an array containing the same dimensions as the input.
  """
  # Orbital parameters are computed based on the formulas in this code, which
  # were determined empirically to produce radiation values similar to ERA5:
  # https://github.com/ECCC-ASTD-MRD/gem/blob/1d711f7b89971cd7b1e10afc7508d1135b51397d/src/rpnphy/src/base/sucst.F90
  # https://github.com/ECCC-ASTD-MRD/gem/blob/1d711f7b89971cd7b1e10afc7508d1135b51397d/src/rpnphy/src/base/fctast.cdk
  # https://github.com/ECCC-ASTD-MRD/gem/blob/1d711f7b89971cd7b1e10afc7508d1135b51397d/src/rpnphy/src/base/fcttim.cdk
  # There are many variations to these formulas, but since the goal is to match
  # the values in ERA5, the formulas were implemented as is. Comments reference
  # the notation used in those sources. Here are some additional references
  # related to the quantities being computed here:
  # https://aa.usno.navy.mil/faq/sun_approx
  # https://en.wikipedia.org/wiki/Position_of_the_Sun
  # https://en.wikipedia.org/wiki/Equation_of_time

  # Number of Julian years since the J2000 epoch (including fractional years).
  theta = j2000_days / _JULIAN_YEAR_LENGTH_IN_DAYS
  # The phase of the Earth's rotation along its axis as a ratio. 0 represents
  # Julian epoch J2000.0 at exactly 12:00 Terrestrial Time (TT).
  rotational_phase = j2000_days % 1.0

  # REL(PTETA).
  rel = 1.7535 + 6.283076 * theta
  # REM(PTETA).
  rem = 6.240041 + 6.283020 * theta
  # RLLS(PTETA).
  rlls = 4.8951 + 6.283076 * theta

  # Variables used in the three polynomials below.
  one = jnp.ones_like(theta)
  sin_rel = jnp.sin(rel)
  cos_rel = jnp.cos(rel)
  sin_two_rel = jnp.sin(2.0 * rel)
  cos_two_rel = jnp.cos(2.0 * rel)
  sin_two_rlls = jnp.sin(2.0 * rlls)
  cos_two_rlls = jnp.cos(2.0 * rlls)
  sin_four_rlls = jnp.sin(4.0 * rlls)
  sin_rem = jnp.sin(rem)
  sin_two_rem = jnp.sin(2.0 * rem)

  # Ecliptic longitude of the Sun - RLLLS(PTETA).
  rllls = jnp.dot(
      jnp.stack(
          [one, theta, sin_rel, cos_rel, sin_two_rel, cos_two_rel], axis=-1
      ),
      jnp.array([4.8952, 6.283320, -0.0075, -0.0326, -0.0003, 0.0002]),
  )

  # Angle in radians between the Earth's rotational axis and its orbital axis.
  # Equivalent to 23.4393°.
  repsm = 0.409093

  # Declination of the Sun - RDS(teta).
  sin_declination = jnp.sin(repsm) * jnp.sin(rllls)
  cos_declination = jnp.sqrt(1.0 - sin_declination**2)

  # Equation of time in seconds - RET(PTETA).
  eq_of_time_seconds = jnp.dot(
      jnp.stack(
          [
              sin_two_rlls,
              sin_rem,
              sin_rem * cos_two_rlls,
              sin_four_rlls,
              sin_two_rem,
          ],
          axis=-1,
      ),
      jnp.array([591.8, -459.4, 39.5, -12.7, -4.8]),
  )

  # Earth-Sun distance in astronomical units - RRS(PTETA).
  solar_distance_au = jnp.dot(
      jnp.stack([one, sin_rel, cos_rel], axis=-1),
      jnp.array([1.0001, -0.0163, 0.0037]),
  )

  return _OrbitalParameters(
      theta=theta,
      rotational_phase=rotational_phase,
      sin_declination=sin_declination,
      cos_declination=cos_declination,
      eq_of_time_seconds=eq_of_time_seconds,
      solar_distance_au=solar_distance_au,
  )


def _get_solar_sin_altitude(
    op: _OrbitalParameters,
    sin_latitude: chex.Array,
    cos_latitude: chex.Array,
    longitude: chex.Array,
) -> chex.Array:
  """Returns the sine of the solar altitude angle.

  All computations are vectorized. Dimensions of all the inputs should be
  broadcastable using standard NumPy rules. For example, if `op` has shape
  `(T, 1, 1)`, `latitude` has shape `(1, H, 1)`, and `longitude` has shape
  `(1, H, W)`, the return value will have shape `(T, H, W)`.

  Args:
    op: Orbital parameters characterising Earth's position relative to the Sun.
    sin_latitude: Sine of latitude coordinates.
    cos_latitude: Cosine of latitude coordinates.
    longitude: Longitude coordinates in radians.

  Returns:
    Sine of the solar altitude angle for each set of orbital parameters and each
    geographical coordinates. The returned array has the shape resulting from
    broadcasting all the inputs together.
  """
  solar_time = op.rotational_phase + op.eq_of_time_seconds / _SECONDS_PER_DAY
  # https://en.wikipedia.org/wiki/Hour_angle#Solar_hour_angle
  hour_angle = 2.0 * jnp.pi * solar_time + longitude
  # https://en.wikipedia.org/wiki/Solar_zenith_angle
  sin_altitude = (
      cos_latitude * op.cos_declination * jnp.cos(hour_angle)
      + sin_latitude * op.sin_declination
  )
  return sin_altitude


def _get_radiation_flux(
    j2000_days: chex.Array,
    sin_latitude: chex.Array,
    cos_latitude: chex.Array,
    longitude: chex.Array,
    tsi: chex.Array,
) -> chex.Array:
  """Computes the instantaneous TOA incident solar radiation flux.

  Computes the instantanous Top-Of-the-Atmosphere (TOA) incident radiation flux
  in W⋅m⁻² for the given timestamps and locations on the surface of the Earth.
  See https://en.wikipedia.org/wiki/Solar_irradiance.

  All inputs are assumed to be broadcastable together using standard NumPy
  rules.

  Args:
    j2000_days: Timestamps represented as the number of days since the J2000
      epoch.
    sin_latitude: Sine of latitude coordinates.
    cos_latitude: Cosine of latitude coordinates.
    longitude: Longitude coordinates in radians.
    tsi: Total Solar Irradiance (TSI) in W⋅m⁻². This can be a scalar (default)
      to use the same TSI value for all the inputs, or an array to allow TSI to
      depend on the timestamps.

  Returns:
    The instataneous TOA incident solar radiation flux in W⋅m⁻² for the given
    timestamps and geographical coordinates. The returned array has the shape
    resulting from broadcasting all the inputs together.
  """
  op = _get_orbital_parameters(j2000_days)
  # Attenuation of the solar radiation based on the solar distance.
  solar_factor = (1.0 / op.solar_distance_au) ** 2
  sin_altitude = _get_solar_sin_altitude(
      op, sin_latitude, cos_latitude, longitude
  )
  return tsi * solar_factor * jnp.maximum(sin_altitude, 0.0)


def _get_integrated_radiation(
    j2000_days: chex.Array,
    sin_latitude: chex.Array,
    cos_latitude: chex.Array,
    longitude: chex.Array,
    tsi: chex.Array,
    integration_period: pd.Timedelta,
    num_integration_bins: int,
) -> chex.Array:
  """Returns the TOA solar radiation flux integrated over a time period.

  Integrates the instantaneous TOA solar radiation flux over a time period.
  The input timestamps represent the end times of each integration period.
  When the integration period is one hour this approximates the
  `toa_incident_solar_radiation` (or `tisr`) parameter from the ERA5 dataset.
  See https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation and
  https://codes.ecmwf.int/grib/param-db/?id=212.

  All inputs are assumed to be broadcastable together using standard NumPy
  rules. To approximate the integral, the instantaneous radiation is computed
  at `num_integration_bins+1` time steps using `_get_radiation_flux` and
  integrated using the trapezoidal rule. A dimension is appended at the end
  of all inputs to compute the instantaneous radiation, which is then integrated
  over to compute the final result.

  Args:
    j2000_days: Timestamps represented as the number of days since the J2000
      epoch. These correspond to the end times of each integration period.
    sin_latitude: Sine of latitude coordinates.
    cos_latitude: Cosine of latitude coordinates.
    longitude: Longitude in radians.
    tsi: Total Solar Irradiance (TSI) in W⋅m⁻².
    integration_period: Integration period.
    num_integration_bins: Number of bins to divide the `integration_period` to
      approximate the integral using the trapezoidal rule.

  Returns:
    The TOA solar radiation flux integrated over the requested time period for
    the given timestamps and geographical coordinates. Unit is J⋅m⁻² .
  """
  # Offsets for the integration time steps.
  offsets = (
      pd.timedelta_range(
          start=-integration_period,
          end=pd.Timedelta(0),
          periods=num_integration_bins + 1,
      )
      / pd.Timedelta(days=1)
  ).to_numpy()

  # Integration happens over the time dimension. Compute the instantaneous
  # radiation flux for all the integration time steps by appending a dimension
  # to all the inputs and adding `offsets` to `j2000_days` (will be broadcast
  # over all the other dimensions).
  fluxes = _get_radiation_flux(
      j2000_days=jnp.expand_dims(j2000_days, axis=-1) + offsets,
      sin_latitude=jnp.expand_dims(sin_latitude, axis=-1),
      cos_latitude=jnp.expand_dims(cos_latitude, axis=-1),
      longitude=jnp.expand_dims(longitude, axis=-1),
      tsi=jnp.expand_dims(tsi, axis=-1),
  )

  # Size of each bin in seconds. The instantaneous solar radiation flux is
  # returned in units of W⋅m⁻². Integrating over time expressed in seconds
  # yields a result in units of J⋅m⁻².
  dx = (integration_period / num_integration_bins) / pd.Timedelta(seconds=1)
  return jax.scipy.integrate.trapezoid(fluxes, dx=dx)


_get_integrated_radiation_jitted = jax.jit(
    _get_integrated_radiation,
    static_argnames=["integration_period", "num_integration_bins"],
)


def get_toa_incident_solar_radiation(
    timestamps: Sequence[_TimestampLike],
    latitude: chex.Array,
    longitude: chex.Array,
    tsi_data: xa.DataArray | None = None,
    integration_period: _TimedeltaLike = _DEFAULT_INTEGRATION_PERIOD,
    num_integration_bins: int = _DEFAULT_NUM_INTEGRATION_BINS,
    use_jit: bool = False,
) -> chex.Array:
  """Computes the solar radiation incident at the top of the atmosphere.

  The solar radiation is computed for each element in `timestamps` for all the
  locations on the grid determined by the `latitude` and `longitude` parameters.

  To approximate the `toa_incident_solar_radiation` (or `tisr`) parameter from
  the ERA5 dataset, set `integration_period` to one hour (default). See
  https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation and
  https://codes.ecmwf.int/grib/param-db/?id=212.

  Args:
    timestamps: Timestamps for which to compute the solar radiation.
    latitude: The latitude coordinates in degrees of the grid for which to
      compute the solar radiation.
    longitude: The longitude coordinates in degrees of the grid for which to
      compute the solar radiation.
    tsi_data: A DataArray containing yearly TSI data as returned by a
      `TsiDataLoader`. The default is to use ERA5 compatible TSI data.
    integration_period: Timedelta to use to integrate the radiation, e.g. if
      producing radiation for 1989-11-08 21:00:00, and `integration_period` is
      "1h", radiation will be integrated from 1989-11-08 20:00:00 to 1989-11-08
      21:00:00. The default value ("1h") matches ERA5.
    num_integration_bins: Number of equally spaced bins to divide the
      `integration_period` in when approximating the integral using the
      trapezoidal rule. Performance and peak memory usage are affected by this
      value. The default (360) provides a good approximation, but lower values
      may work to improve performance and reduce memory usage.
    use_jit: Set to True to use the jitted implementation, or False (default) to
      use the non-jitted one.

  Returns:
    An 3D array with dimensions (time, lat, lon) containing the total
    top of atmosphere solar radiation integrated for the `integration_period`
    up to each timestamp.
  """
  # Add a trailing dimension to latitude to get dimensions (lat, lon).
  lat = jnp.radians(latitude).reshape((-1, 1))
  lon = jnp.radians(longitude)
  sin_lat = jnp.sin(lat)
  cos_lat = jnp.cos(lat)
  integration_period = pd.Timedelta(integration_period)
  if tsi_data is None:
    tsi_data = _DEFAULT_TSI_DATA_LOADER()
  tsi = get_tsi(timestamps, tsi_data)
  fn = (
      _get_integrated_radiation_jitted if use_jit else _get_integrated_radiation
  )

  # Compute integral for each timestamp individually. Although this could be
  # done in one step, peak memory usage would be proportional to
  # `len(timestamps) * num_integration_bins`. Computing each timestamp
  # individually reduces this to `max(len(timestamps), num_integration_bins)`.
  # E.g. memory usage for a single timestamp, with a full 0.25° grid and 360
  # integration bins is about 1.5 GB (1440 * 721 * 361 * 4 bytes); computing
  # forcings for 40 prediction steps would require 60 GB.
  results = []
  for idx, timestamp in enumerate(timestamps):
    results.append(
        fn(
            j2000_days=jnp.array(_get_j2000_days(pd.Timestamp(timestamp))),
            sin_latitude=sin_lat,
            cos_latitude=cos_lat,
            longitude=lon,
            tsi=tsi[idx],
            integration_period=integration_period,
            num_integration_bins=num_integration_bins,
        )
    )
  return jnp.stack(results, axis=0)


def get_toa_incident_solar_radiation_for_xarray(
    data_array_like: xa.DataArray | xa.Dataset,
    tsi_data: xa.DataArray | None = None,
    integration_period: _TimedeltaLike = _DEFAULT_INTEGRATION_PERIOD,
    num_integration_bins: int = _DEFAULT_NUM_INTEGRATION_BINS,
    use_jit: bool = False,
) -> xa.DataArray:
  """Computes the solar radiation incident at the top of the atmosphere.

  This method is a wrapper for `get_toa_incident_solar_radiation` using
  coordinates from an Xarray and returning an Xarray.

  Args:
    data_array_like: A xa.Dataset or xa.DataArray from which to take the time
      and spatial coordinates for which to compute the solar radiation. It must
      contain `lat` and `lon` spatial dimensions with corresponding coordinates.
      If a `time` dimension is present, the `datetime` coordinate should be a
      vector associated with that dimension containing timestamps for which to
      compute the solar radiation. Otherwise, the `datetime` coordinate should
      be a scalar representing the timestamp for which to compute the solar
      radiation.
    tsi_data: A DataArray containing yearly TSI data as returned by a
      `TsiDataLoader`. The default is to use ERA5 compatible TSI data.
    integration_period: Timedelta to use to integrate the radiation, e.g. if
      producing radiation for 1989-11-08 21:00:00, and `integration_period` is
      "1h", radiation will be integrated from 1989-11-08 20:00:00 to 1989-11-08
      21:00:00. The default value ("1h") matches ERA5.
    num_integration_bins: Number of equally spaced bins to divide the
      `integration_period` in when approximating the integral using the
      trapezoidal rule. Performance and peak memory usage are affected by this
      value. The default (360) provides a good approximation, but lower values
      may work to improve performance and reduce memory usage.
    use_jit: Set to True to use the jitted implementation, or False to use the
      non-jitted one.

  Returns:
    xa.DataArray with dimensions `(time, lat, lon)` if `data_array_like` had
    a `time` dimension; or dimensions `(lat, lon)` otherwise. The `datetime`
    coordinates and those for the dimensions are copied to the returned array.
    The array contains the total top of atmosphere solar radiation integrated
    for `integration_period` up to the corresponding `datetime`.

  Raises:
    ValueError: If there are missing coordinates or dimensions.
  """
  missing_dims = set(["lat", "lon"]) - set(data_array_like.dims)
  if missing_dims:
    raise ValueError(
        f"'{missing_dims}' dimensions are missing in `data_array_like`."
    )

  missing_coords = set(["datetime", "lat", "lon"]) - set(data_array_like.coords)
  if missing_coords:
    raise ValueError(
        f"'{missing_coords}' coordinates are missing in `data_array_like`."
    )

  if "time" in data_array_like.dims:
    timestamps = data_array_like.coords["datetime"].data
  else:
    timestamps = [data_array_like.coords["datetime"].data.item()]

  radiation = get_toa_incident_solar_radiation(
      timestamps=timestamps,
      latitude=data_array_like.coords["lat"].data,
      longitude=data_array_like.coords["lon"].data,
      tsi_data=tsi_data,
      integration_period=integration_period,
      num_integration_bins=num_integration_bins,
      use_jit=use_jit,
  )

  if "time" in data_array_like.dims:
    output = xa.DataArray(radiation, dims=("time", "lat", "lon"))
  else:
    output = xa.DataArray(radiation[0], dims=("lat", "lon"))

  # Preserve as many of the original coordinates as possible, so long as the
  # dimension or the coordinate still exist in the output array.
  for k, coord in data_array_like.coords.items():
    if set(coord.dims).issubset(set(output.dims)):
      output.coords[k] = coord
  return output