File size: 10,440 Bytes
6d70ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright 2023 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for `data_utils.py`."""

import datetime
from absl.testing import absltest
from absl.testing import parameterized
from graphcast import data_utils
import numpy as np
import xarray as xa


class DataUtilsTest(parameterized.TestCase):

  def setUp(self):
    super().setUp()
    # Fix the seed for reproducibility.
    np.random.seed(0)

  def test_year_progress_is_zero_at_year_start_or_end(self):
    year_progress = data_utils.get_year_progress(
        np.array([
            0,
            data_utils.AVG_SEC_PER_YEAR,
            data_utils.AVG_SEC_PER_YEAR * 42,  # 42 years.
        ])
    )
    np.testing.assert_array_equal(year_progress, np.zeros(year_progress.shape))

  def test_year_progress_is_almost_one_before_year_ends(self):
    year_progress = data_utils.get_year_progress(
        np.array([
            data_utils.AVG_SEC_PER_YEAR - 1,
            (data_utils.AVG_SEC_PER_YEAR - 1) * 42,  # ~42 years
        ])
    )
    with self.subTest("Year progress values are close to 1"):
      self.assertTrue(np.all(year_progress > 0.999))
    with self.subTest("Year progress values != 1"):
      self.assertTrue(np.all(year_progress < 1.0))

  def test_day_progress_computes_for_all_times_and_longitudes(self):
    times = np.random.randint(low=0, high=1e10, size=10)
    longitudes = np.arange(0, 360.0, 1.0)
    day_progress = data_utils.get_day_progress(times, longitudes)
    with self.subTest("Day progress is computed for all times and longinutes"):
      self.assertSequenceEqual(
          day_progress.shape, (len(times), len(longitudes))
      )

  @parameterized.named_parameters(
      dict(
          testcase_name="random_date_1",
          year=1988,
          month=11,
          day=7,
          hour=2,
          minute=45,
          second=34,
      ),
      dict(
          testcase_name="random_date_2",
          year=2022,
          month=3,
          day=12,
          hour=7,
          minute=1,
          second=0,
      ),
  )
  def test_day_progress_is_in_between_zero_and_one(
      self, year, month, day, hour, minute, second
  ):
    # Datetime from a timestamp.
    dt = datetime.datetime(year, month, day, hour, minute, second)
    # Epoch time.
    epoch_time = datetime.datetime(1970, 1, 1)
    # Seconds since epoch.
    seconds_since_epoch = np.array([(dt - epoch_time).total_seconds()])

    # Longitudes with 1 degree resolution.
    longitudes = np.arange(0, 360.0, 1.0)

    day_progress = data_utils.get_day_progress(seconds_since_epoch, longitudes)
    with self.subTest("Day progress >= 0"):
      self.assertTrue(np.all(day_progress >= 0.0))
    with self.subTest("Day progress < 1"):
      self.assertTrue(np.all(day_progress < 1.0))

  def test_day_progress_is_zero_at_day_start_or_end(self):
    day_progress = data_utils.get_day_progress(
        seconds_since_epoch=np.array([
            0,
            data_utils.SEC_PER_DAY,
            data_utils.SEC_PER_DAY * 42,  # 42 days.
        ]),
        longitude=np.array([0.0]),
    )
    np.testing.assert_array_equal(day_progress, np.zeros(day_progress.shape))

  def test_day_progress_specific_value(self):
    day_progress = data_utils.get_day_progress(
        seconds_since_epoch=np.array([123]),
        longitude=np.array([0.0]),
    )
    np.testing.assert_array_almost_equal(
        day_progress, np.array([[0.00142361]]), decimal=6
    )

  def test_featurize_progress_valid_values_and_dimensions(self):
    day_progress = np.array([0.0, 0.45, 0.213])
    feature_dimensions = ("time",)
    progress_features = data_utils.featurize_progress(
        name="day_progress", dims=feature_dimensions, progress=day_progress
    )
    for feature in progress_features.values():
      with self.subTest(f"Valid dimensions for {feature}"):
        self.assertSequenceEqual(feature.dims, feature_dimensions)

    with self.subTest("Valid values for day_progress"):
      np.testing.assert_array_equal(
          day_progress, progress_features["day_progress"].values
      )

    with self.subTest("Valid values for day_progress_sin"):
      np.testing.assert_array_almost_equal(
          np.array([0.0, 0.30901699, 0.97309851]),
          progress_features["day_progress_sin"].values,
          decimal=6,
      )

    with self.subTest("Valid values for day_progress_cos"):
      np.testing.assert_array_almost_equal(
          np.array([1.0, -0.95105652, 0.23038943]),
          progress_features["day_progress_cos"].values,
          decimal=6,
      )

  def test_featurize_progress_invalid_dimensions(self):
    year_progress = np.array([0.0, 0.45, 0.213])
    feature_dimensions = ("time", "longitude")
    with self.assertRaises(ValueError):
      data_utils.featurize_progress(
          name="year_progress", dims=feature_dimensions, progress=year_progress
      )

  def test_add_derived_vars_variables_added(self):
    data = xa.Dataset(
        data_vars={
            "var1": (["x", "lon", "datetime"], 8 * np.random.randn(2, 2, 3))
        },
        coords={
            "lon": np.array([0.0, 0.5]),
            "datetime": np.array([
                datetime.datetime(2021, 1, 1),
                datetime.datetime(2023, 1, 1),
                datetime.datetime(2023, 1, 3),
            ]),
        },
    )
    data_utils.add_derived_vars(data)
    all_variables = set(data.variables)

    with self.subTest("Original value was not removed"):
      self.assertIn("var1", all_variables)
    with self.subTest("Year progress feature was added"):
      self.assertIn(data_utils.YEAR_PROGRESS, all_variables)
    with self.subTest("Day progress feature was added"):
      self.assertIn(data_utils.DAY_PROGRESS, all_variables)

  def test_add_derived_vars_existing_vars_not_overridden(self):
    dims = ["x", "lon", "datetime"]
    data = xa.Dataset(
        data_vars={
            "var1": (dims, 8 * np.random.randn(2, 2, 3)),
            data_utils.YEAR_PROGRESS: (dims, np.full((2, 2, 3), 0.111)),
            data_utils.DAY_PROGRESS: (dims, np.full((2, 2, 3), 0.222)),
        },
        coords={
            "lon": np.array([0.0, 0.5]),
            "datetime": np.array([
                datetime.datetime(2021, 1, 1),
                datetime.datetime(2023, 1, 1),
                datetime.datetime(2023, 1, 3),
            ]),
        },
    )

    data_utils.add_derived_vars(data)

    with self.subTest("Year progress feature was not overridden"):
      np.testing.assert_allclose(data[data_utils.YEAR_PROGRESS], 0.111)
    with self.subTest("Day progress feature was not overridden"):
      np.testing.assert_allclose(data[data_utils.DAY_PROGRESS], 0.222)

  @parameterized.named_parameters(
      dict(testcase_name="missing_datetime", coord_name="lon"),
      dict(testcase_name="missing_lon", coord_name="datetime"),
  )
  def test_add_derived_vars_missing_coordinate_raises_value_error(
      self, coord_name
  ):
    with self.subTest(f"Missing {coord_name} coordinate"):
      data = xa.Dataset(
          data_vars={"var1": (["x", coord_name], 8 * np.random.randn(2, 2))},
          coords={
              coord_name: np.array([0.0, 0.5]),
          },
      )
      with self.assertRaises(ValueError):
        data_utils.add_derived_vars(data)

  def test_add_tisr_var_variable_added(self):
    data = xa.Dataset(
        data_vars={
            "var1": (["time", "lat", "lon"], np.full((2, 2, 2), 8.0))
        },
        coords={
            "lat": np.array([2.0, 1.0]),
            "lon": np.array([0.0, 0.5]),
            "time": np.array([100, 200], dtype="timedelta64[s]"),
            "datetime": xa.Variable(
                "time", np.array([10, 20], dtype="datetime64[D]")
            ),
        },
    )

    data_utils.add_tisr_var(data)

    self.assertIn(data_utils.TISR, set(data.variables))

  def test_add_tisr_var_existing_var_not_overridden(self):
    dims = ["time", "lat", "lon"]
    data = xa.Dataset(
        data_vars={
            "var1": (dims, np.full((2, 2, 2), 8.0)),
            data_utils.TISR: (dims, np.full((2, 2, 2), 1200.0)),
        },
        coords={
            "lat": np.array([2.0, 1.0]),
            "lon": np.array([0.0, 0.5]),
            "time": np.array([100, 200], dtype="timedelta64[s]"),
            "datetime": xa.Variable(
                "time", np.array([10, 20], dtype="datetime64[D]")
            ),
        },
    )

    data_utils.add_derived_vars(data)

    np.testing.assert_allclose(data[data_utils.TISR], 1200.0)

  def test_add_tisr_var_works_with_batch_dim_size_one(self):
    data = xa.Dataset(
        data_vars={
            "var1": (
                ["batch", "time", "lat", "lon"],
                np.full((1, 2, 2, 2), 8.0),
            )
        },
        coords={
            "lat": np.array([2.0, 1.0]),
            "lon": np.array([0.0, 0.5]),
            "time": np.array([100, 200], dtype="timedelta64[s]"),
            "datetime": xa.Variable(
                ("batch", "time"), np.array([[10, 20]], dtype="datetime64[D]")
            ),
        },
    )

    data_utils.add_tisr_var(data)

    self.assertIn(data_utils.TISR, set(data.variables))

  def test_add_tisr_var_fails_with_batch_dim_size_greater_than_one(self):
    data = xa.Dataset(
        data_vars={
            "var1": (
                ["batch", "time", "lat", "lon"],
                np.full((2, 2, 2, 2), 8.0),
            )
        },
        coords={
            "lat": np.array([2.0, 1.0]),
            "lon": np.array([0.0, 0.5]),
            "time": np.array([100, 200], dtype="timedelta64[s]"),
            "datetime": xa.Variable(
                ("batch", "time"),
                np.array([[10, 20], [100, 200]], dtype="datetime64[D]"),
            ),
        },
    )

    with self.assertRaisesRegex(ValueError, r"cannot select a dimension"):
      data_utils.add_tisr_var(data)


if __name__ == "__main__":
  absltest.main()