Gabriel commited on
Commit
e9aaba2
1 Parent(s): 00a2019

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: bart-base-cnn-xsum-wiki-swe
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # bart-base-cnn-xsum-wiki-swe
17
+
18
+ This model is a fine-tuned version of [Gabriel/bart-base-cnn-xsum-swe](https://huggingface.co/Gabriel/bart-base-cnn-xsum-swe) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 2.3884
21
+ - Rouge1: 26.8917
22
+ - Rouge2: 11.8254
23
+ - Rougel: 22.6089
24
+ - Rougelsum: 26.1492
25
+ - Gen Len: 19.3468
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 500
53
+ - num_epochs: 9
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
60
+ | 2.4993 | 1.0 | 2985 | 2.3834 | 25.8959 | 10.9373 | 21.8329 | 25.2002 | 19.1416 |
61
+ | 2.2397 | 2.0 | 5970 | 2.2939 | 26.1166 | 11.4087 | 22.2444 | 25.4752 | 19.2351 |
62
+ | 2.0318 | 3.0 | 8955 | 2.2687 | 26.5222 | 11.6512 | 22.567 | 25.851 | 19.2384 |
63
+ | 1.879 | 4.0 | 11940 | 2.2750 | 26.7637 | 11.7676 | 22.6674 | 26.0753 | 19.2622 |
64
+ | 1.7532 | 5.0 | 14925 | 2.2923 | 26.8104 | 11.8724 | 22.6794 | 26.0907 | 19.3063 |
65
+ | 1.6315 | 6.0 | 17910 | 2.3190 | 26.7758 | 11.7989 | 22.5925 | 26.032 | 19.3136 |
66
+ | 1.5409 | 7.0 | 20895 | 2.3517 | 26.8762 | 11.8552 | 22.6694 | 26.1329 | 19.3275 |
67
+ | 1.4711 | 8.0 | 23880 | 2.3679 | 26.899 | 11.9185 | 22.6764 | 26.1574 | 19.2994 |
68
+ | 1.4105 | 9.0 | 26865 | 2.3884 | 26.8917 | 11.8254 | 22.6089 | 26.1492 | 19.3468 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.22.2
74
+ - Pytorch 1.12.1+cu113
75
+ - Datasets 2.5.1
76
+ - Tokenizers 0.12.1