GRMenon commited on
Commit
c54351a
·
1 Parent(s): 9ba106f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -8
README.md CHANGED
@@ -3,32 +3,37 @@ license: apache-2.0
3
  library_name: peft
4
  tags:
5
  - generated_from_trainer
 
 
 
6
  base_model: mistralai/Mistral-7B-Instruct-v0.2
7
  model-index:
8
  - name: mental-health-mistral-7b-instructv0.2-finetuned-V2
9
  results: []
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
  # mental-health-mistral-7b-instructv0.2-finetuned-V2
16
 
17
- This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.6432
20
 
21
- ## Model description
22
 
23
- More information needed
 
24
 
25
- ## Intended uses & limitations
26
 
27
- More information needed
28
 
29
  ## Training and evaluation data
30
 
31
- More information needed
 
 
 
32
 
33
  ## Training procedure
34
 
@@ -53,6 +58,46 @@ The following hyperparameters were used during training:
53
  | 1.2608 | 2.0 | 704 | 0.6956 |
54
  | 1.1845 | 3.0 | 1056 | 0.6432 |
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  ### Framework versions
58
 
 
3
  library_name: peft
4
  tags:
5
  - generated_from_trainer
6
+ - mistral
7
+ - text-generation
8
+ - Transformers
9
  base_model: mistralai/Mistral-7B-Instruct-v0.2
10
  model-index:
11
  - name: mental-health-mistral-7b-instructv0.2-finetuned-V2
12
  results: []
13
  ---
14
 
 
 
15
 
16
  # mental-health-mistral-7b-instructv0.2-finetuned-V2
17
 
18
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the [mental_health_counseling_conversations](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations) dataset.
19
  It achieves the following results on the evaluation set:
20
  - Loss: 0.6432
21
 
22
+ ## Model description
23
 
24
+ A Mistral-7B-Instruct-v0.2 model finetuned on a corpus of mental health conversations between a psychologist and a user.
25
+ The intention was to create a mental health assistant, "Connor", to address user questions based on responses from a psychologist.
26
 
27
+ ## Intended uses & limitations
28
 
29
+ Intended to be used as a mental health chatbot to respond to user queries.
30
 
31
  ## Training and evaluation data
32
 
33
+ The model is finetuned on a corpus of mental health conversations between a psychologist and a client, in the form of context - response pairs. This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists.
34
+ Dataset found here :-
35
+ * [Kaggle](https://www.kaggle.com/datasets/thedevastator/nlp-mental-health-conversations)
36
+ * [Huggingface](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations)
37
 
38
  ## Training procedure
39
 
 
58
  | 1.2608 | 2.0 | 704 | 0.6956 |
59
  | 1.1845 | 3.0 | 1056 | 0.6432 |
60
 
61
+ # Usage
62
+
63
+ ```python
64
+ import torch
65
+ from transformers import AutoModelForCausalLM, AutoTokenizer
66
+ from peft import PeftConfig, PeftModel
67
+
68
+ base_model = "mistralai/Mistral-7B-Instruct-v0.2"
69
+ adapter = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2"
70
+
71
+ # Load tokenizer
72
+ tokenizer = AutoTokenizer.from_pretrained(
73
+ base_model,
74
+ add_bos_token=True,
75
+ trust_remote_code=True,
76
+ padding_side='left'
77
+ )
78
+
79
+ # Create peft model using base_model and finetuned adapter
80
+ config = PeftConfig.from_pretrained(adapter)
81
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_4bit=True, device_map='auto', torch_dtype='auto')
82
+ model = PeftModel.from_pretrained(model, adapter)
83
+
84
+ device = "cuda" if torch.cuda.is_available() else "cpu"
85
+ model.to(device)
86
+ model.eval()
87
+
88
+ # Prompt content:
89
+ messages = [
90
+ {"role": "user", "content": "Hey Connor! I have been feeling a bit down lately. I could really use some advice on how to feel better?"}
91
+ ]
92
+
93
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to(device)
94
+ output_ids = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, pad_token_id=2)
95
+ response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens = True)
96
+
97
+ # Model response:
98
+ print(response[0])
99
+ ```
100
+
101
 
102
  ### Framework versions
103