File size: 12,125 Bytes
0d1b9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b720f66
f8aea88
0d1b9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c13e616
0d1b9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63db6c7
0d1b9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
---
base_model: DiscoResearch/DiscoLM_German_7b_v1
pipeline_tag: text-generation
inference: false
model_creator: DiscoResearch
model_name: DiscoLM_German_7b_v1
model_type: mistral
language:
  - de
  - en
library_name: transformers
license: apache-2.0
quantized_by: ThiloteE
tags:
  - text-generation-inference
  - transformers
  - GGUF
  - GPT4All-community
  - GPT4All
  - conversational
  - Mistral
  - chatml
  - German
  - Deutsch
  - synthetic data
model-index:
  - name: DiscoLM_German_7b_v1
    results: []



---



> [!NOTE]
> This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk.


# About

<!-- ### quantize_version: 3 -->
<!-- ### convert_type: hf -->


- Static quants of https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1 at commit [560f972](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1/commit/560f972f9f735fc9289584b3aa8d75d0e539c44e)
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [e09a800](https://github.com/ggerganov/llama.cpp/commit/e09a800f9a9b19c73aa78e03b4c4be8ed988f3e6)


# Prompt Template (for GPT4All)

Example System Prompt:
```
<|im_start|>system
Hier ist eine Anweisung, die eine Aufgabe beschreibt. Schreiben Sie eine Antwort, die die Anfrage angemessen erfüllt.<|im_end|>
```

Chat Template:
```
<|im_start|>user
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>
```

# Context Length

`32768`

Use a lower value during inference, if you do not have enough RAM or VRAM.

# Provided Quants


| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/GPT4All-Community/DiscoLM_German_7b_v1/resolve/main/DiscoLM_German_7b_v1-Q4_0.gguf?download=true) | Q4_0 | 4.1 | fast, recommended |




# About GGUF

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF) for
more details, including on how to concatenate multi-part files.

Here is a handy graph by ikawrakow comparing some quant types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

# Thanks

I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. Also 3Simplex for lots of help along the way.
Shoutout to the GPT4All and llama.cpp communities :-)


------

<!-- footer end -->
<!-- original-model-card start -->

------
------
















# Original Model card:

---
base_model: LeoLM/leo-mistral-hessianai-7b
tags:
- Mistral
- finetune
- chatml
- DPO
- German
- Deutsch
- synthetic data
model-index:
- name: DiscoLM_German_7b_v1
  results: []
license: apache-2.0
language:
- de
- en
---

# DiscoLM German 7b v1

![DiscoLM_Logo](discolm_german.png)

## Table of Contents

1. [Introduction](#introduction)
2. [Demo](#demo)
3. [Downloads](#Downloads)
4. [Prompt Format](#prompt-format)
5. [Results](#results)
6. [Evaluation](#evaluation)
7. [Dataset](#dataset)
8. [Limitations & Biases](#limitations--biases)
9. [Acknowledgements](#acknowledgements)
10. [About DiscoResearch](#about-discoresearch)
11. [Disclaimer](#disclaimer)

# Introduction

**DiscoLM German 7b** is a Mistral-based large language model with a focus on German-language applications and the successor of the [EM German](https://huggingface.co/jphme/em_german_leo_mistral) model family. 
It was trained on a large dataset of instructions in German and English with a SFT finetuning phase followed by additional DPO reinforcement learning. 
The model is optimized for German text, providing proficiency in understanding, generating, and interacting with German language content while preserving its fluency in English and excelling at translation tasks.

Our goal with Disco LM German was not to beat benchmarks, but to provide a robust and reliable model for everyday use that can serve as a drop-in replacement for ChatGPT and other proprietary models. 
We find that the perceived quality of it´s German-language output is even higher than GPT-4 in many cases; however it won't compete with larger models and top English 7b models for very complex reasoning, math or coding tasks.

# Demo

Please find a Demo and try the model at [demo.discoresearch.org](https://demo.discoresearch.org/) (in case the Demo is down and you have questions, you can contact us on our [Discord](https://discord.gg/ttNdas89f3)).

# Downloads

## Model Links

We will update the links as soon as the quants are available on HuggingFace.

| Base Model | HF    | GPTQ  | GGUF  | AWQ   |
|-------|-------|-------|-------|-------|
| DiscoLM German 7b v1 | [Link](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1) | [Link](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GPTQ) | [Link](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF) | [Link](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-AWQ) |


# Prompt Format

DiscoLM German uses ChatML as the prompt format which enables OpenAI endpoint compatability and is supported by most inference libraries and frontends.

System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.

```
<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
Wer bist du?<|im_end|>
<|im_start|>assistant
Ich bin ein Sprachmodell namens DiscoLM German und ich wurde von DiscoResearch trainiert.<|im_end|>
```

This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:

```python
messages = [
    {"role": "system", "content": "Du bist ein hilfreicher Assistent."},
    {"role": "user", "content": "Wer bist du?"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```

When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
that the model continues with an assistant response.

## Retrieval Format

You can use a special retrieval format to improve steerability and reduce hallucinations for RAG applications (but other, more default formats should also work, this is purely optional)

Example:

```
### System:

Du bist ein hilfreicher Assistent. Für die folgende Aufgabe stehen dir zwischen den Tags BEGININPUT und ENDINPUT mehrere Quellen zur Verfügung. Metadaten zu den einzelnen Quellen wie Autor, URL o.ä. sind zwischen BEGINCONTEXT und ENDCONTEXT zu finden, danach folgt der Text der Quelle. Die eigentliche Aufgabe oder Frage ist zwischen BEGININSTRUCTION und ENDINSTRUCTION zu finden. Beantworte diese ausschließlich mit Informationen aus den gegebenen Quellen und gebe die Information zur genutzten Quelle  unter "Quelle:" an. Sollten die Quellen keine relevanten Informationen enthalten, antworte: "Mit den gegebenen Informationen ist diese Frage nicht zu beantworten."

### User Prompt:

BEGININPUT
BEGINCONTEXT
url: https://this.is.fake.news
time: 2089-09-01
ENDCONTEXT
Buxtehude ist die größte Stadt Deutschlands mit 96.56 Millionen Einwohnern.
ENDINPUT

BEGININSTRUCTION
Was ist die größte deutsche Stadt?
ENDINSTRUCTION

### Model Answer:

Die größte deutsche Stadt ist Buxtehude.

Quelle:
  url: https://this.is.fake.news
  time: 2089-09-01

```

## Function Calling

The model also supports structured outputs/function calling, albeit this is a very experimental feature and YMMV.
This will be improved in the future.

The model will prefix functioncalls with `<functioncall>` and you can provide results in response with `<functionresponse>` for Multi-Turn applications.

Example:

```
### System:

Du bist ein hilfreicher Assistent. Extrahiere alle Personen aus den Eingaben des Users.

Du hast Zugriff auf folgende Funktionen:

{'name': 'PersonList',
 'description': 'Extrahiere die Namen aller im Text vorkommenden Personen',
 'parameters': {'$defs': {'Person': {'description': 'Details über eine person',
    'properties': {'name': {'title': 'Name', 'type': 'string'},
     'job': {'anyOf': [{'type': 'string'}, {'type': 'null'}], 'title': 'Job'},
     'age': {'anyOf': [{'type': 'integer'}, {'type': 'null'}],
      'title': 'Age'}},
    'required': ['name', 'job', 'age'],
    'title': 'Person',
    'type': 'object'}},
  'properties': {'person_list': {'items': {'$ref': '#/$defs/Person'},
    'title': 'Person List',
    'type': 'array'}},
  'required': ['person_list'],
  'type': 'object'}}

### User Prompt:

Björn (25) und Jan sind die Gründer von ellamind.

### Model Answer:

<functioncall> {"name": "PersonList", "arguments": '{"person_list": ["{"name": "Björn", "job": "founder", "age": 25}, {"name": "Jan", "job": "founder", "age": null}]}'}

```


# Results

-to follow -

# Evaluation

As written above, we believe that current benchmarks don't capture the full spectrum of LLM capabilities very well. We didn't look at any benchmark results (besides training losses) until the work on DiscoLM was finished and didn't include any data resembling common benchmark formats in our training data.

That said, preliminary results with a German version of MT Bench show promising results: While lacking for coding and extraxtion tasks, DiscoLM German 7b performs not far below GPT-3.5-turbo on many tasks and even singificantly outperforms it in the reasoning category.

![MTBench_DE_Results](mtbench_de_discolm_german_7b.png)

Additional Benchmark results will follow. The biggest strength of this model (language quality as perceived by native speakers) can't yet be captured in a benchmark - please let us know if you have an idea how to change this!

# Dataset

The dataset is a mixture of multi-turn chats, retrieval instructions and synthetically generated instructions spawning many topics and applications.


# Limitations & Biases

This model can produce factually incorrect and offensive output, and should not be relied on to produce factually accurate information.
This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate biased or otherwise offensive outputs and it is the responsibility of the user to implement a safety/moderation layer. Please use with caution.

# Acknowledgements

DiscoLM German is a [DiscoResearch](https://huggingface.co/DiscoResearch) project led by [JP Harries](https://huggingface.co/jphme) and supported by [Björn Plüster](https://huggingface.co/bjoernp) and [Daniel Auras](https://huggingface.co/rasdani).

We thank [HessianAI](https://hessian.ai/) for providing compute & support for various DiscoResearch projects and our friends at [LAION](https://laion.ai) for their work on LeoLM and scientific adivce.**

Development of DiscoLM German 7b was sponsored by **[ellamind](https://ellamind.com)**, where some of our founders are working on creating customized models for business applications with a focus on non-english language applications. Please get in contact if you need customized models for your business!


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

# About DiscoResearch

DiscoResearch is an aspiring open research community for AI enthusiasts and LLM hackers. Come join our [Discord](https://discord.gg/ttNdas89f3), share your opinions and ideas, and advance open LLM research with us!


# Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. This model should only be deployed with additional safety measures in place.




<!-- original-model-card end -->
<!-- end -->