--- license: mit base_model: laion/CLIP-ViT-H-14-laion2B-s32B-b79K tags: - generated_from_trainer datasets: - imagefolder metrics: - f1 model-index: - name: vit-SUPER02 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: F1 type: f1 value: 0.9434741496133529 --- # vit-SUPER02 This model is a fine-tuned version of [laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2246 - F1: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2088 | 0.3 | 50 | 4.0561 | 0.0670 | | 2.9768 | 0.6 | 100 | 2.8147 | 0.2790 | | 1.9733 | 0.9 | 150 | 1.7144 | 0.5560 | | 1.1587 | 1.2 | 200 | 1.0544 | 0.7479 | | 0.7738 | 1.5 | 250 | 0.6839 | 0.8392 | | 0.5944 | 1.8 | 300 | 0.5771 | 0.8660 | | 0.3746 | 2.1 | 350 | 0.5237 | 0.8636 | | 0.4313 | 2.4 | 400 | 0.4649 | 0.8927 | | 0.3874 | 2.69 | 450 | 0.3890 | 0.9015 | | 0.346 | 2.99 | 500 | 0.3728 | 0.9072 | | 0.3123 | 3.29 | 550 | 0.3296 | 0.9113 | | 0.2976 | 3.59 | 600 | 0.3369 | 0.9166 | | 0.2371 | 3.89 | 650 | 0.3207 | 0.9139 | | 0.1462 | 4.19 | 700 | 0.2997 | 0.9195 | | 0.178 | 4.49 | 750 | 0.2870 | 0.9317 | | 0.1489 | 4.79 | 800 | 0.3048 | 0.9216 | | 0.1135 | 5.09 | 850 | 0.2626 | 0.9364 | | 0.0992 | 5.39 | 900 | 0.2920 | 0.9291 | | 0.0879 | 5.69 | 950 | 0.2536 | 0.9365 | | 0.0908 | 5.99 | 1000 | 0.2315 | 0.9435 | | 0.071 | 6.29 | 1050 | 0.2542 | 0.9378 | | 0.047 | 6.59 | 1100 | 0.2517 | 0.9426 | | 0.0565 | 6.89 | 1150 | 0.2513 | 0.9365 | | 0.0119 | 7.19 | 1200 | 0.2293 | 0.9431 | | 0.0142 | 7.49 | 1250 | 0.2454 | 0.9414 | | 0.0124 | 7.78 | 1300 | 0.2391 | 0.9432 | | 0.0057 | 8.08 | 1350 | 0.2355 | 0.9446 | | 0.0041 | 8.38 | 1400 | 0.2242 | 0.9520 | | 0.0107 | 8.68 | 1450 | 0.2230 | 0.9466 | | 0.009 | 8.98 | 1500 | 0.2236 | 0.9495 | | 0.0027 | 9.28 | 1550 | 0.2274 | 0.9466 | | 0.0027 | 9.58 | 1600 | 0.2241 | 0.9454 | | 0.0022 | 9.88 | 1650 | 0.2246 | 0.9435 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1