File size: 1,178 Bytes
02ea827 e8996fc 02ea827 21905bf f256354 e584b28 f256354 6aa1d2b f256354 6aa1d2b d59da8a 6aa1d2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
inference: false
license: mit
widget:
language:
- en
metrics:
- mrr
datasets:
- augmented_codesearchnet
---
# 🔥 Augmented Code Model 🔥
This is Augmented Code Model which is a fined-tune model of [CodeBERT](https://huggingface.co/microsoft/codebert-base) for processing of similarity between given docstring and code. This model is fined-model based on Augmented Code Corpus with ACS=4.
## How to use the model ?
Similar to other huggingface model, you may load the model as follows.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Fujitsu/AugCode")
model = AutoModelForSequenceClassification.from_pretrained("Fujitsu/AugCode")
```
Then you may use `model` to infer the similarity between a given docstring and code.
### Citation
```bibtex@misc{bahrami2021augcode,
title={AugmentedCode: Examining the Effects of Natural Language Resources in Code Retrieval Models},
author={Mehdi Bahrami, N. C. Shrikanth, Yuji Mizobuchi, Lei Liu, Masahiro Fukuyori, Wei-Peng Chen, Kazuki Munakata},
year={2021},
eprint={TBA},
archivePrefix={TBA},
primaryClass={cs.CL}
}
``` |