Fudan-FUXI
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,117 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- THUDM/CogVideoX-2b
|
7 |
+
- Fudan-FUXI/LiFT-Critic-40b-lora
|
8 |
+
pipeline_tag: text-to-video
|
9 |
---
|
10 |
+
|
11 |
+
# LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment
|
12 |
+
|
13 |
+
CogVideoX-1.5-LiFT is the fine-tuned version of CogVideoX-1.5 using our reward-weighted learning method.
|
14 |
+
|
15 |
+
## 🚀 Quick Start
|
16 |
+
|
17 |
+
We provide `cli_demo.py` for users to quick start.
|
18 |
+
```
|
19 |
+
import argparse
|
20 |
+
from typing import Literal
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from diffusers import (
|
24 |
+
CogVideoXPipeline,
|
25 |
+
CogVideoXDDIMScheduler,
|
26 |
+
CogVideoXDPMScheduler,
|
27 |
+
)
|
28 |
+
from diffusers.utils import export_to_video, load_image, load_video
|
29 |
+
|
30 |
+
def generate_video(
|
31 |
+
prompt: str,
|
32 |
+
model_path: str,
|
33 |
+
lora_path: str = None,
|
34 |
+
lora_rank: int = 128,
|
35 |
+
output_path: str = "./output.mp4",
|
36 |
+
image_or_video_path: str = "",
|
37 |
+
num_inference_steps: int = 50,
|
38 |
+
guidance_scale: float = 6.0,
|
39 |
+
num_videos_per_prompt: int = 1,
|
40 |
+
dtype: torch.dtype = torch.bfloat16,
|
41 |
+
generate_type: str = Literal["t2v", "i2v", "v2v"],
|
42 |
+
seed: int = 42,
|
43 |
+
):
|
44 |
+
|
45 |
+
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
|
46 |
+
|
47 |
+
if lora_path:
|
48 |
+
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test")
|
49 |
+
pipe.fuse_lora(lora_scale=1 / lora_rank, components=['transformer'])
|
50 |
+
|
51 |
+
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
52 |
+
|
53 |
+
pipe.to("cuda")
|
54 |
+
|
55 |
+
video_generate = pipe(
|
56 |
+
prompt=prompt,
|
57 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
58 |
+
num_inference_steps=num_inference_steps,
|
59 |
+
num_frames=49,
|
60 |
+
use_dynamic_cfg=True,
|
61 |
+
guidance_scale=guidance_scale,
|
62 |
+
generator=torch.Generator().manual_seed(seed),
|
63 |
+
).frames[0]
|
64 |
+
|
65 |
+
export_to_video(video_generate, output_path, fps=8)
|
66 |
+
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
|
70 |
+
parser.add_argument(
|
71 |
+
"--model_path", type=str, default='Fudan-FUXI/CogVideoX-2B-LiFT', help="The path of the pre-trained model to be used"
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--prompt", type=str, default="A girl riding a bike.", help="The description of the video to be generated"
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
|
78 |
+
)
|
79 |
+
parser.add_argument(
|
80 |
+
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
|
84 |
+
)
|
85 |
+
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
|
86 |
+
|
87 |
+
args = parser.parse_args()
|
88 |
+
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
|
89 |
+
generate_video(
|
90 |
+
prompt=args.prompt,
|
91 |
+
model_path=args.model_path,
|
92 |
+
output_path=args.output_path,
|
93 |
+
num_inference_steps=args.num_inference_steps,
|
94 |
+
dtype=dtype,
|
95 |
+
generate_type='t2v',
|
96 |
+
seed=args.seed,
|
97 |
+
)
|
98 |
+
```
|
99 |
+
|
100 |
+
Running the Script:
|
101 |
+
```
|
102 |
+
$ python cli_demo.py --prompt "a girl riding a bike." --model_path Fudan-FUXI/CogVideoX-2B-LiFT
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
# 🖊️ Citation
|
108 |
+
|
109 |
+
If you find our work helpful, please cite our paper.
|
110 |
+
```bibtex
|
111 |
+
@article{LiFT,
|
112 |
+
title={LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment.},
|
113 |
+
author={Wang, Yibin and Tan, Zhiyu, and Wang, Junyan and Yang, Xiaomeng and Jin, Cheng and Li, Hao},
|
114 |
+
journal={arXiv preprint arXiv:2412.04814},
|
115 |
+
year={2024}
|
116 |
+
}
|
117 |
+
```
|