--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: xlm-roberta-base-chn results: [] --- # xlm-roberta-base-chn This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1099 - Accuracy: 0.8201 - F1 Binary: 0.5729 - Precision: 0.4830 - Recall: 0.7040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 39 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:| | No log | 1.0 | 397 | 0.1365 | 0.8182 | 0.4844 | 0.4713 | 0.4982 | | 0.1411 | 2.0 | 794 | 0.1133 | 0.8210 | 0.5375 | 0.4825 | 0.6066 | | 0.111 | 3.0 | 1191 | 0.1364 | 0.8655 | 0.5929 | 0.6158 | 0.5717 | | 0.0802 | 4.0 | 1588 | 0.1099 | 0.8201 | 0.5729 | 0.4830 | 0.7040 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0