--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-base-multilingual-cased-ukr results: [] --- # bert-base-multilingual-cased-ukr This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 - Accuracy: 0.8350 - F1 Binary: 0.4058 - Precision: 0.2966 - Recall: 0.6423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 36 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:| | No log | 1.0 | 185 | 0.1355 | 0.6984 | 0.2684 | 0.1705 | 0.6308 | | No log | 2.0 | 370 | 0.1206 | 0.7969 | 0.3428 | 0.2393 | 0.6038 | | 0.12 | 3.0 | 555 | 0.1118 | 0.8111 | 0.3792 | 0.2664 | 0.6577 | | 0.12 | 4.0 | 740 | 0.1717 | 0.8350 | 0.4058 | 0.2966 | 0.6423 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0