--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-base-multilingual-cased-tir results: [] --- # bert-base-multilingual-cased-tir This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Accuracy: 0.6520 - F1 Binary: 0.3654 - Precision: 0.2527 - Recall: 0.6592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 55 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:| | No log | 1.0 | 276 | 0.1520 | 0.7999 | 0.3719 | 0.3555 | 0.3899 | | 0.1423 | 2.0 | 552 | 0.1383 | 0.7499 | 0.3835 | 0.3066 | 0.5119 | | 0.1423 | 3.0 | 828 | 0.1401 | 0.7763 | 0.3807 | 0.3286 | 0.4524 | | 0.1303 | 4.0 | 1104 | 0.1424 | 0.6520 | 0.3654 | 0.2527 | 0.6592 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0