|
|
|
|
|
|
|
|
|
import argparse |
|
import sys |
|
import re |
|
from typing import Dict |
|
|
|
import torch |
|
from datasets import Audio, Dataset, load_dataset, load_metric |
|
|
|
from pyctcdecode import BeamSearchDecoderCTC |
|
from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline |
|
import transformers |
|
|
|
import Levenshtein |
|
import hunspell |
|
dutch_unigrams = set(open('language_model/unigrams.txt').read().splitlines()) |
|
dutch_hobj = hunspell.HunSpell('dictionaries/nl.dic', 'dictionaries/nl.aff') |
|
MOST_COMMON_WORDS = 'ik|je|het|de|is|dat|een|niet|en|wat|van|we|in|ze|op|te|hij|zijn|er|maar|me|die|heb|voor|met|als|ben|was|n|mijn|u|dit|aan|hier|om|naar|dan|jij|weet|ja|kan|geen|zo|nog|wil|wel|moet|goed|hem|hebben|nee|heeft|waar|nu|hoe|ga|t|kom|uit|gaan|bent|haar|doen|ook|mij|over|of|daar|zou|al|jullie|bij|ons|zal|gaat|hebt|meer|waarom|iets|laat|deze|had|doe|wie|jou|moeten|alles|denk|kunnen|eens|echt|man|weg|door|okΓ©|toch|zien|alleen|s|nou'.split('|') |
|
|
|
def log_results(result: Dataset, args: Dict[str, str]): |
|
"""DO NOT CHANGE. This function computes and logs the result metrics.""" |
|
|
|
log_outputs = args.log_outputs |
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) |
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) |
|
|
|
|
|
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" |
|
print(result_str) |
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f: |
|
f.write(result_str) |
|
|
|
|
|
if log_outputs is not None: |
|
pred_file = f"log_{dataset_id}_predictions.txt" |
|
target_file = f"log_{dataset_id}_targets.txt" |
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
|
|
|
def write_to_file(batch, i): |
|
p.write(f"{i}" + "\n") |
|
p.write(batch["prediction"] + "\n") |
|
t.write(f"{i}" + "\n") |
|
t.write(batch["target"] + "\n") |
|
|
|
result.map(write_to_file, with_indices=True) |
|
|
|
|
|
def normalize_text(text: str) -> str: |
|
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" |
|
|
|
chars_to_ignore_regex = '[,?.!\-\;\:"β%ββοΏ½βββ¦β]' |
|
|
|
text = re.sub(chars_to_ignore_regex, "", text.lower()) |
|
text = re.sub(r'[\n\s]+', ' ', text) |
|
|
|
return text |
|
|
|
|
|
def main(args): |
|
|
|
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) |
|
|
|
|
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) |
|
sampling_rate = feature_extractor.sampling_rate |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) |
|
|
|
|
|
if args.device is None: |
|
args.device = 0 if torch.cuda.is_available() else -1 |
|
|
|
config = transformers.PretrainedConfig.from_pretrained(args.model_id) |
|
model=transformers.Wav2Vec2ForCTC.from_pretrained(args.model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
processor = transformers.AutoProcessor.from_pretrained(args.model_id) |
|
language_model = BeamSearchDecoderCTC.model_container[processor.decoder._model_key]._kenlm_model |
|
|
|
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=processor.decoder, device=args.device) |
|
|
|
|
|
def map_to_pred(batch): |
|
prediction = asr( |
|
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s |
|
) |
|
|
|
text = prediction["text"] |
|
|
|
|
|
|
|
text_words = text.split(' ') |
|
is_known_word = lambda word: (len(word) == 0) or (word in dutch_unigrams) or (dutch_hobj.spell(word)) |
|
for index in range(len(text_words)): |
|
|
|
curr_word = text_words[index] |
|
if is_known_word(curr_word): continue |
|
|
|
prev_word = text_words[index-1] if index>0 else '<s>' |
|
next_word = text_words[index+1] if index<len(text_words)-1 else '</s>' |
|
|
|
BASE_PENALITY = -2 |
|
EDIT_PENALITY = -0.5 |
|
|
|
curr_word_letters = curr_word.replace("-",'').replace("'",'') |
|
|
|
best_word = curr_word |
|
best_score = language_model.score(prev_word + ' ' + curr_word + ' ' + next_word) + BASE_PENALITY |
|
|
|
|
|
|
|
all_suggestions = list(dutch_hobj.suggest(curr_word)) |
|
|
|
|
|
if curr_word.endswith('lik'): |
|
all_suggestions.append(curr_word[0:-3] + 'lijk') |
|
|
|
|
|
for most_common_word in MOST_COMMON_WORDS: |
|
if curr_word.endswith(most_common_word): |
|
all_suggestions.append(curr_word[0:-len(most_common_word)] + ' ' + most_common_word) |
|
|
|
|
|
for sugg_word in all_suggestions: |
|
sugg_word = sugg_word.lower() |
|
|
|
sugg_word_letters = sugg_word.replace("-",'').replace("'",'') |
|
sugg_distance = Levenshtein.distance(curr_word_letters, sugg_word_letters) |
|
sugg_distance = sugg_distance if sugg_distance > 0 else -3 |
|
sugg_score = language_model.score(prev_word + ' ' + sugg_word + ' ' + next_word) + EDIT_PENALITY * sugg_distance |
|
|
|
if sugg_score > best_score: |
|
best_score = sugg_score |
|
best_word = sugg_word |
|
|
|
if best_word != curr_word: |
|
text_words[index] = best_word |
|
|
|
|
|
|
|
|
|
text = " ".join(text_words) |
|
|
|
batch["prediction"] = text |
|
batch["target"] = normalize_text(batch["sentence"]) |
|
return batch |
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
|
|
|
|
|
log_results(result, args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with π€ Transformers" |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
required=True, |
|
help="Dataset name to evaluate the `model_id`. Should be loadable with π€ Datasets", |
|
) |
|
parser.add_argument( |
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" |
|
) |
|
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") |
|
parser.add_argument( |
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." |
|
) |
|
parser.add_argument( |
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." |
|
) |
|
parser.add_argument( |
|
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=int, |
|
default=None, |
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", |
|
) |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|