---
license: apache-2.0
language:
- ar
- zh
- en
---
# AceGPT
AceGPT is a fully fine-tuned generative text model collection based on LlaMA2, particularly in the
Arabic language domain. This is the repository for the version 1.5 of 13B-chat pre-trained model.
---
## Model Details
We have released the AceGPT family of large language models, which is a collection of fully fine-tuned generative text models based on LlaMA2, ranging from 7B to 13B parameters. Our models include two main categories: AceGPT and AceGPT-chat. AceGPT-chat is an optimized version specifically designed for dialogue applications. It is worth mentioning that our models have demonstrated superior performance compared to all currently available open-source Arabic dialogue models in multiple benchmark tests. Furthermore, in our human evaluations, our models have shown comparable satisfaction levels to some closed-source models, such as ChatGPT, in the Arabic language.
## Model Developers
We are from the Chinese University of Hong Kong, Shenzhen (CUHKSZ), the Shenzhen Research Institute of Big Data (SRIBD), the King Abdullah University of Science and Technology (KAUST), and King AbdulAziz University (KAU).
## Variations
AceGPT families come in a range of parameter sizes —— 7B and 13B, each size of model has a base category and a -chat category.
## Input
Models input text only.
## Output
Models output text only.
## Model Evaluation Results
Benchmark evaluations are conducted using accuracy or F1 scores as metrics, following the evaluation framework available at https://github.com/FreedomIntelligence/AceGPT/tree/main.
([**ArabicMMLU**](https://github.com/mbzuai-nlp/ArabicMMLU) is assessed based on its source settings.)
| | [**MMLU** (Huang et al. (2023))](https://github.com/FreedomIntelligence/AceGPT) | [ArabicMMLU](https://github.com/mbzuai-nlp/ArabicMMLU) | EXAMS | ACVA (clean) | ACVA (all) | BoolQ (trans) | ARC-C (trans) | Average |
|------------------|------|------|------|------|------|------|------|------|
| LLaMA2-7B-chat | 13.78 | 33.40 | 13.05 | 20.99 | 21.80 | 34.92 | 23.72 | 21.09 |
| Phoenix-7b | 29.72 | 44.74 | 31.93 | 43.80 | 41.86 | 66.70 | 33.53 | 41.75 |
| AceGPT-7B-chat | 30.69 | 36.31 | 33.73 | 53.87 | 53.07 | 60.70 | 38.05 | 43.77 |
| Mistral-7B-Instruct-v0.2 | 27.93 | 41.44 | 21.56 | 64.56 | 63.47 | 60.18 | 35.67 | 44.97 |
| **AceGPT-v1.5-7B-chat** | 45.77 | 56.62 | 43.69 | 69.46 | 70.86 | 72.45 | 60.49 | 59.90 |
| Jais-13B-chat | 19.52 | 54.83 | 19.71 | 66.75 | 61.41 | 41.25 | 11.95 | 39.34 |
| Llama2-13B-chat | 8.92 | 36.12 | 16.11 | 35.12 | 35.71 | 54.13 | 27.47 | 30.51 |
| AceGPT-13B-chat | 35.59 | 52.61 | 38.72 | 70.82 | 70.21 | 66.85 | 44.20 | 54.14 |
| **AceGPT-v1.5-13B-chat** | **47.33** | 61.70 | **48.37** | **76.90** | 76.37 | 69.33 | **63.99** | **63.42** |
| Jais-30B-chat-v1 | 38.12 | 59.33 | 40.45 | 74.46 | 72.41 | 73.76 | 50.94 | 58.49 |
| Jais-30B-chat-v3 | 35.68 | **62.36** | 32.24 | 73.63 | 73.66 | **76.30** | 51.02 | 57.84 |
| ChatGPT 3.5 Turbo | 46.07 | 57.72 | 45.63 | 74.45 | **76.88** | 76.12 | 60.24 | 62.44 |
## Samples
#### Sample1(abstract_algebra)
* input:
": فيما يلي أسئلة الاختيار من متعدد حول جبر تجريدي\n\nسؤال: ما هو الدرجة للامتداد الميداني الناتج من Q(sqrt(2), sqrt(3), sqrt(18)) على Q؟\nA. 0\nB. 4\nC. 2\nD. 6\nمن فضلك اختر إجابة واحدة من بين 'A، B، C، D' دون شرح. : "
* output:
"B\n\nالشرح:\n\nالامت"
#### Sample2(business_ethics)
* input:
": فيما يلي أسئلة الاختيار من متعدد حول أخلاقيات الأعمال\n\nسؤال: تُصبح _______ مثل البيتكوين أكثر انتشارًا وتحمل مجموعة كبيرة من الآثار الأخلاقية المرتبطة بها، على سبيل المثال، إنها _______ وأكثر _______. ومع ذلك، تم استخدامها أيضًا للمشاركة في _______.\nA. العملات الرقمية، مكلفة، آمنة، جرائم مالية\nB. العملات التقليدية، رخيصة، غير آمنة، العطاء الخيري\nC. العملات الرقمية، رخيصة، آمنة، جرائم مالية\nD. العملات التقليدية، مكلفة، غير آمنة، العطاء الخيري\nمن فضلك اختر إجابة واحدة من بين 'A، B، C، D' دون شرح. : "
* output:
"C\n\nالشرح:\n\nالإ"
# Reference
```
@article{zhu2024second,
title={Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion},
author={Zhu, Jianqing and Huang, Huang and Lin, Zhihang and Liang, Juhao and Tang, Zhengyang and Almubarak, Khalid and Alharthi, Mosen and others},
journal={},
year={2024}
}
```