File size: 3,611 Bytes
69d022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from mteb import MTEB
import torch
import clip

import numpy as np

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL, PREPROCESS = clip.load("RN50", device=DEVICE)


TASK_LIST_CLASSIFICATION = [
    "AmazonCounterfactualClassification",
    "AmazonPolarityClassification",
    "AmazonReviewsClassification",
    "Banking77Classification",
    "EmotionClassification",
    "ImdbClassification",
    "MassiveIntentClassification",
    "MassiveScenarioClassification",
    "MTOPDomainClassification",
    "MTOPIntentClassification",
    "ToxicConversationsClassification",
    "TweetSentimentExtractionClassification",
]

TASK_LIST_CLUSTERING = [
    "ArxivClusteringP2P",
    "ArxivClusteringS2S",
    "BiorxivClusteringP2P",
    "BiorxivClusteringS2S",
    "MedrxivClusteringP2P",
    "MedrxivClusteringS2S",
    "RedditClustering",
    "RedditClusteringP2P",
    "StackExchangeClustering",
    "StackExchangeClusteringP2P",
    "TwentyNewsgroupsClustering",
]

TASK_LIST_PAIR_CLASSIFICATION = [
    "SprintDuplicateQuestions",
    "TwitterSemEval2015",
    "TwitterURLCorpus",
]

TASK_LIST_RERANKING = [
    "AskUbuntuDupQuestions",
    "MindSmallReranking",
    "SciDocsRR",
    "StackOverflowDupQuestions",
]

TASK_LIST_RETRIEVAL = [
    "ArguAna",
    "ClimateFEVER",
    "CQADupstackAndroidRetrieval",
    "CQADupstackEnglishRetrieval",
    "CQADupstackGamingRetrieval",
    "CQADupstackGisRetrieval",
    "CQADupstackMathematicaRetrieval",
    "CQADupstackPhysicsRetrieval",
    "CQADupstackProgrammersRetrieval",
    "CQADupstackStatsRetrieval",
    "CQADupstackTexRetrieval",
    "CQADupstackUnixRetrieval",
    "CQADupstackWebmastersRetrieval",
    "CQADupstackWordpressRetrieval",
    "DBPedia",
    "FEVER",
    "FiQA2018",
    "HotpotQA",
    "MSMARCO",
    "NFCorpus",
    "NQ",
    "QuoraRetrieval",
    "SCIDOCS",
    "SciFact",
    "Touche2020",
    "TRECCOVID",
]

TASK_LIST_STS = [
    "BIOSSES",
    "SICK-R",
    "STS12",
    "STS13",
    "STS14",
    "STS15",
    "STS16",
    "STS17",
    "STS22",
    "STSBenchmark",
    "SummEval",
]

TASK_LIST = TASK_LIST_CLASSIFICATION
    + TASK_LIST_CLUSTERING
    + TASK_LIST_PAIR_CLASSIFICATION
    + TASK_LIST_RERANKING
    + TASK_LIST_RETRIEVAL
    + TASK_LIST_STS




class ClipModel:
    """
    This is an wrapper class for the clip embedding model.
    """

    def encode(self, sentences, batch_size=1, **kwargs):
        """Returns a list of embeddings for the given sentences.
        Args:
            sentences (`List[str]`): List of sentences to encode
            batch_size (`int`): Batch size for the encoding

        Returns:
            `List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
        """
        embeddings = []
        for i in range(0, len(sentences)):
            batch = sentences[i]
            try:
                text = clip.tokenize(batch).to(DEVICE)[
                    :, :77
                ]  # clip.tokenize(batch).to(DEVICE)

                with torch.no_grad():
                    text_features = MODEL.encode_text(text)

            except:
                print("too long token")
                text = clip.tokenize(batch[: (77 * 2)]).to(DEVICE)[
                    :, :77
                ]  # clip.tokenize(batch).to(DEVICE)

                with torch.no_grad():
                    text_features = MODEL.encode_text(text)

            embeddings.append(text_features.cpu().numpy().squeeze())

        return embeddings


model = ClipModel()
evaluation = MTEB(tasks=TASK_LIST, output_folder=f"results/clip/", task_langs=["en"])
evaluation.run(model)