File size: 3,611 Bytes
69d022a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from mteb import MTEB
import torch
import clip
import numpy as np
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL, PREPROCESS = clip.load("RN50", device=DEVICE)
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
"ClimateFEVER",
"CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval",
"DBPedia",
"FEVER",
"FiQA2018",
"HotpotQA",
"MSMARCO",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
"SummEval",
]
TASK_LIST = TASK_LIST_CLASSIFICATION
+ TASK_LIST_CLUSTERING
+ TASK_LIST_PAIR_CLASSIFICATION
+ TASK_LIST_RERANKING
+ TASK_LIST_RETRIEVAL
+ TASK_LIST_STS
class ClipModel:
"""
This is an wrapper class for the clip embedding model.
"""
def encode(self, sentences, batch_size=1, **kwargs):
"""Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
embeddings = []
for i in range(0, len(sentences)):
batch = sentences[i]
try:
text = clip.tokenize(batch).to(DEVICE)[
:, :77
] # clip.tokenize(batch).to(DEVICE)
with torch.no_grad():
text_features = MODEL.encode_text(text)
except:
print("too long token")
text = clip.tokenize(batch[: (77 * 2)]).to(DEVICE)[
:, :77
] # clip.tokenize(batch).to(DEVICE)
with torch.no_grad():
text_features = MODEL.encode_text(text)
embeddings.append(text_features.cpu().numpy().squeeze())
return embeddings
model = ClipModel()
evaluation = MTEB(tasks=TASK_LIST, output_folder=f"results/clip/", task_langs=["en"])
evaluation.run(model)
|