FnSK4R17s commited on
Commit
735a83b
·
1 Parent(s): ab53a94

Traimed for 1M steps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.15 +/- 21.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ffb23c22d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffb23c22dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffb23c22e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffb23c22ee0>", "_build": "<function ActorCriticPolicy._build at 0x7ffb23c22f70>", "forward": "<function ActorCriticPolicy.forward at 0x7ffb23c27040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffb23c270d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ffb23c27160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffb23c271f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffb23c27280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffb23c27310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ffb23c9e840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672685606254235939, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI37iz1E78c9YFbnPbwbV77neug9sNoOPQAAAAAAAAAADRncPda1wj56X4i89lKdvvbWVj0WukW8AAAAAAAAAABacKk9romHung8cDrWvSs2+a/qOUGoi7kAAIA/AAAAAGY4PLyuW4i6IW4uNHWE0K5pxTY7CXKtswAAgD8AAIA/zZxYuytYsz9kUSa+ludrvr30FDvrMs47AAAAAAAAAABa3Jy9tuCyPzB5S751PgK/PVYevuIMm70AAAAAAAAAAOIXo76mV94+tT6mPv+ar76b/ZW9MmeDPQAAAAAAAAAAgHwovVjV1j7veUo+vDSRvkQalj02duw8AAAAAAAAAADN/K294PWAPzKCK751kQO/xCY3vpPd77sAAAAAAAAAAK2kK77uHaI/Q/ubvtyiE78gjIK+My0pvgAAAAAAAAAA5mbDvfVlaz9o2729/hzvvrjF6r08+8Y8AAAAAAAAAABa5+M9/HB7PRuEKr5Csim+vy49vSMylLwAAAAAAAAAAHM+Iz6PGSA/eqxVvVKZnb6UXMk97+isvQAAAAAAAAAADSrDPR0egz9AtCw+7wXhvpevBj61lNk7AAAAAAAAAADNtJG8FKqZur8cvzv31jw5zqoEO4jIWboAAIA/AACAP80Skr0cxok/FS4ZvqX2775jR/C93iUUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdy0hH7SHckCUhpRSlIwBbJRNIgGMAXSUR0CbDJnx8UmEdX2UKGgGaAloD0MImUf+YGBVbUCUhpRSlGgVS/xoFkdAmw0PD50r9XV9lChoBmgJaA9DCKfPDrguG3FAlIaUUpRoFUvhaBZHQJsNHjCHh0h1fZQoaAZoCWgPQwjuQnOdRpxyQJSGlFKUaBVNTQFoFkdAmw2DZHuqm3V9lChoBmgJaA9DCL3D7dAwEXJAlIaUUpRoFU0cAWgWR0CbDemEXcgydX2UKGgGaAloD0MIHTuoxHUicUCUhpRSlGgVS+JoFkdAmw4fjjrAxnV9lChoBmgJaA9DCJNxjGQPF3BAlIaUUpRoFU0GAWgWR0CbDvqdH2AYdX2UKGgGaAloD0MIEk4LXvTubkCUhpRSlGgVTRwBaBZHQJsPb6WPcSJ1fZQoaAZoCWgPQwgvMCsUqdRwQJSGlFKUaBVL9GgWR0CbD64EOiFkdX2UKGgGaAloD0MIy/RLxNvRbkCUhpRSlGgVS/toFkdAmw/rIo3JgnV9lChoBmgJaA9DCAEVjiDVpHFAlIaUUpRoFUv+aBZHQJsRLzmOlwd1fZQoaAZoCWgPQwhXsfhNIVdwQJSGlFKUaBVNFwFoFkdAmxHuRkmQbXV9lChoBmgJaA9DCMpOP6gLkXFAlIaUUpRoFUv2aBZHQJsSYMDwH7h1fZQoaAZoCWgPQwhSmzi5X59uQJSGlFKUaBVNBAFoFkdAmxNqNp/PPnV9lChoBmgJaA9DCHGTUWUYSW9AlIaUUpRoFUv5aBZHQJsTm6xxDLN1fZQoaAZoCWgPQwgCZylZzgBwQJSGlFKUaBVL+GgWR0CbE+haC+URdX2UKGgGaAloD0MI0XmNXaJRbUCUhpRSlGgVS/doFkdAmxRsrRSgoXV9lChoBmgJaA9DCPKXFvXJHXFAlIaUUpRoFUvkaBZHQJsUvxCpm291fZQoaAZoCWgPQwg7yOvBZN1wQJSGlFKUaBVNLgFoFkdAmxYsyi22HHV9lChoBmgJaA9DCLA6cqSzKnJAlIaUUpRoFU2zAWgWR0CbFldznzQNdX2UKGgGaAloD0MIxO47hsd9cUCUhpRSlGgVTSkBaBZHQJsWa2lVLjB1fZQoaAZoCWgPQwhGmKJcmklwQJSGlFKUaBVNAAFoFkdAmxayfcvdunV9lChoBmgJaA9DCFDIztuY/3FAlIaUUpRoFU0sAWgWR0CbFwm9g4OudX2UKGgGaAloD0MI3nTLDvH7cECUhpRSlGgVTQwBaBZHQJsXot8NQTF1fZQoaAZoCWgPQwgMk6mCEeVyQJSGlFKUaBVNFwFoFkdAmxgnRG+bmXV9lChoBmgJaA9DCDeOWIsPjXJAlIaUUpRoFUv4aBZHQJsYk1fmcON1fZQoaAZoCWgPQwhxcVRu4ppyQJSGlFKUaBVNFAFoFkdAmxoH6hxo7HV9lChoBmgJaA9DCOp1i8DY73BAlIaUUpRoFU0VAWgWR0CbGoGATZg5dX2UKGgGaAloD0MIpd3oY/4kc0CUhpRSlGgVTQEBaBZHQJsbCnm7rcF1fZQoaAZoCWgPQwhxPJ8BdV5vQJSGlFKUaBVL7WgWR0CbG4YODrZ8dX2UKGgGaAloD0MIQ8U4f5NUckCUhpRSlGgVTQ8BaBZHQJsbzw7T2Fp1fZQoaAZoCWgPQwjmstE5/w9yQJSGlFKUaBVNAgFoFkdAmxvevpyIYXV9lChoBmgJaA9DCJ5CrtQz1XBAlIaUUpRoFU0iAWgWR0CbG+oJiRW+dX2UKGgGaAloD0MIQE6YMNrecUCUhpRSlGgVS/BoFkdAmx19l7MPjHV9lChoBmgJaA9DCCEFTyHXiXFAlIaUUpRoFU0MAWgWR0CbHcGu9vjwdX2UKGgGaAloD0MItAWE1oMUcECUhpRSlGgVS/RoFkdAmx4IBBAv+XV9lChoBmgJaA9DCDemJywxA3FAlIaUUpRoFUvoaBZHQJseVlar3kB1fZQoaAZoCWgPQwi9cOfCyOZyQJSGlFKUaBVNGwFoFkdAmx5uVPepGXV9lChoBmgJaA9DCBjqsMKtSXJAlIaUUpRoFU0fAWgWR0CbHneV9nbqdX2UKGgGaAloD0MI0765vzqgcECUhpRSlGgVS+VoFkdAmzISzollb3V9lChoBmgJaA9DCIYb8PlhlW9AlIaUUpRoFU0IAWgWR0CbMombLEDRdX2UKGgGaAloD0MIgSbChqd2ckCUhpRSlGgVS/VoFkdAmzPRmseXA3V9lChoBmgJaA9DCDi+9sySr3FAlIaUUpRoFUv7aBZHQJs1WV/tpmF1fZQoaAZoCWgPQwiZm29E9zBuQJSGlFKUaBVNHgFoFkdAmzVsYAKfF3V9lChoBmgJaA9DCFOynIRSC3FAlIaUUpRoFU0BAWgWR0CbNeV7Qb++dX2UKGgGaAloD0MIJlXbTXA+cUCUhpRSlGgVTSEBaBZHQJs2DQmeDnN1fZQoaAZoCWgPQwimY84ztn9xQJSGlFKUaBVNCQFoFkdAmzYZxWDHwXV9lChoBmgJaA9DCD4ipkQSpHBAlIaUUpRoFU0gAWgWR0CbNq+98JD3dX2UKGgGaAloD0MISZ9W0R/mbUCUhpRSlGgVS/toFkdAmzdilzltCXV9lChoBmgJaA9DCPyqXKi8SnBAlIaUUpRoFUvxaBZHQJs3oaHbh3t1fZQoaAZoCWgPQwglA0AVN9ZxQJSGlFKUaBVL+GgWR0CbODO6NEPUdX2UKGgGaAloD0MIWYY41gUSc0CUhpRSlGgVTSIBaBZHQJs4ssxwhnt1fZQoaAZoCWgPQwhzvALRU/NyQJSGlFKUaBVNEAFoFkdAmzjDMaCL/HV9lChoBmgJaA9DCFKZYg6Cvm5AlIaUUpRoFUv+aBZHQJs5Hvuw5eZ1fZQoaAZoCWgPQwgEdF/O7KdxQJSGlFKUaBVNHAFoFkdAmzky0WuX/3V9lChoBmgJaA9DCNEeL6RDlHFAlIaUUpRoFU0BAWgWR0CbOaXdj5KwdX2UKGgGaAloD0MICisVVFT3b0CUhpRSlGgVS+poFkdAmzo+dsi0OXV9lChoBmgJaA9DCBi0kIARYHBAlIaUUpRoFU0BAWgWR0CbPHyLQ5WBdX2UKGgGaAloD0MIVu9wOzRLckCUhpRSlGgVS/poFkdAmzzYK2KEWnV9lChoBmgJaA9DCIYb8PmhSXBAlIaUUpRoFU0aAWgWR0CbPWdvbXYldX2UKGgGaAloD0MIklz+Q3qZckCUhpRSlGgVTQEBaBZHQJs9/PiT+vR1fZQoaAZoCWgPQwgXoG01K+BwQJSGlFKUaBVNHAFoFkdAmz4jbN8mbHV9lChoBmgJaA9DCFiqC3gZ/nBAlIaUUpRoFUv2aBZHQJs+oOMERrd1fZQoaAZoCWgPQwhxcVRuokJwQJSGlFKUaBVNBAFoFkdAmz7SaJAMUnV9lChoBmgJaA9DCIf6XdgaY2ZAlIaUUpRoFU3oA2gWR0CbPxAMUh3adX2UKGgGaAloD0MIZfuQt1yYckCUhpRSlGgVTTkBaBZHQJs/D6KtPpJ1fZQoaAZoCWgPQwh0DMheb6ZwQJSGlFKUaBVNDQFoFkdAmz/fLPldT3V9lChoBmgJaA9DCDOkiuLVIm5AlIaUUpRoFU0CAWgWR0CbQBhlDneSdX2UKGgGaAloD0MIB7e1hed5bECUhpRSlGgVS/hoFkdAm0BXSSeRP3V9lChoBmgJaA9DCE8+PbYlInBAlIaUUpRoFUvkaBZHQJtAWNZNfw91fZQoaAZoCWgPQwhxVG6iFjZuQJSGlFKUaBVNDQFoFkdAm0DEzoEB83V9lChoBmgJaA9DCJF7urpj4nFAlIaUUpRoFU0pAWgWR0CbQRco6S1WdX2UKGgGaAloD0MI7WRwlLzyckCUhpRSlGgVS/1oFkdAm0F/luFYdXV9lChoBmgJaA9DCDP60XBK325AlIaUUpRoFUvtaBZHQJtC+JKraM91fZQoaAZoCWgPQwhd3hyu1c1tQJSGlFKUaBVL8WgWR0CbQ16KLsKLdX2UKGgGaAloD0MI7+NojiymcECUhpRSlGgVS/loFkdAm0QdWZJCjXV9lChoBmgJaA9DCPiImBIJSnFAlIaUUpRoFUvuaBZHQJtFhrpJPIp1fZQoaAZoCWgPQwiLUkKwqs5vQJSGlFKUaBVL9GgWR0CbRb06HTJAdX2UKGgGaAloD0MIsfz5tqB3cUCUhpRSlGgVTRgBaBZHQJtFyILw4Kh1fZQoaAZoCWgPQwiKr3YUZ1xvQJSGlFKUaBVNEAFoFkdAm0YrlzU7S3V9lChoBmgJaA9DCNTwLawb9nJAlIaUUpRoFU0oAWgWR0CbRmeHBUJfdX2UKGgGaAloD0MI/bypSIX8b0CUhpRSlGgVTRgBaBZHQJtGkQRPGhp1fZQoaAZoCWgPQwgLKNTTxzpxQJSGlFKUaBVL7WgWR0CbRqAqur6tdX2UKGgGaAloD0MI2GZjJeYFc0CUhpRSlGgVS/poFkdAm0bDufEn9nV9lChoBmgJaA9DCNJyoIda7m9AlIaUUpRoFUvwaBZHQJtG68rZrYZ1fZQoaAZoCWgPQwh9k6ZB0RdzQJSGlFKUaBVL72gWR0CbR1UyYXwcdX2UKGgGaAloD0MINo/DYP6+bECUhpRSlGgVTSABaBZHQJtIDR2KVIJ1fZQoaAZoCWgPQwgktOVcShVwQJSGlFKUaBVNGwFoFkdAm0i7MkhRqHV9lChoBmgJaA9DCN5aJsPx2nFAlIaUUpRoFU0NAWgWR0CbSNO938oAdX2UKGgGaAloD0MIXtkFg2usckCUhpRSlGgVTREBaBZHQJtKcwGnn+11fZQoaAZoCWgPQwgpWrkXGCluQJSGlFKUaBVL92gWR0CbStEYfnwHdX2UKGgGaAloD0MIvhOzXswfcUCUhpRSlGgVTRMBaBZHQJtK7vYvnKZ1fZQoaAZoCWgPQwgPmfIhqB5XQJSGlFKUaBVL5WgWR0CbS6iuuA7QdX2UKGgGaAloD0MINrBVgsWYckCUhpRSlGgVTQYBaBZHQJtMdxsEaEV1fZQoaAZoCWgPQwif5A6biEFzQJSGlFKUaBVL+mgWR0CbTLFZgXuWdX2UKGgGaAloD0MImrFoOns+ckCUhpRSlGgVTQ4BaBZHQJtM42WIGhV1fZQoaAZoCWgPQwgt7j8yHRZzQJSGlFKUaBVL+2gWR0CbTPefZmI1dX2UKGgGaAloD0MIXRjpRa0+ckCUhpRSlGgVS+ZoFkdAm0zzg2qDLHV9lChoBmgJaA9DCCZtqu4Ru3BAlIaUUpRoFUvyaBZHQJtNGAH3UQV1fZQoaAZoCWgPQwjU1ohgHPlyQJSGlFKUaBVNGQFoFkdAm03x3zMA3nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f8c480b81aa874247d5653b26d0d45f4c59900b282ed63a5c341f4c9f1d24a7
3
+ size 147162
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ffb23c22d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffb23c22dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffb23c22e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffb23c22ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ffb23c22f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ffb23c27040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffb23c270d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ffb23c27160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffb23c271f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffb23c27280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffb23c27310>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ffb23c9e840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672685606254235939,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI37iz1E78c9YFbnPbwbV77neug9sNoOPQAAAAAAAAAADRncPda1wj56X4i89lKdvvbWVj0WukW8AAAAAAAAAABacKk9romHung8cDrWvSs2+a/qOUGoi7kAAIA/AAAAAGY4PLyuW4i6IW4uNHWE0K5pxTY7CXKtswAAgD8AAIA/zZxYuytYsz9kUSa+ludrvr30FDvrMs47AAAAAAAAAABa3Jy9tuCyPzB5S751PgK/PVYevuIMm70AAAAAAAAAAOIXo76mV94+tT6mPv+ar76b/ZW9MmeDPQAAAAAAAAAAgHwovVjV1j7veUo+vDSRvkQalj02duw8AAAAAAAAAADN/K294PWAPzKCK751kQO/xCY3vpPd77sAAAAAAAAAAK2kK77uHaI/Q/ubvtyiE78gjIK+My0pvgAAAAAAAAAA5mbDvfVlaz9o2729/hzvvrjF6r08+8Y8AAAAAAAAAABa5+M9/HB7PRuEKr5Csim+vy49vSMylLwAAAAAAAAAAHM+Iz6PGSA/eqxVvVKZnb6UXMk97+isvQAAAAAAAAAADSrDPR0egz9AtCw+7wXhvpevBj61lNk7AAAAAAAAAADNtJG8FKqZur8cvzv31jw5zqoEO4jIWboAAIA/AACAP80Skr0cxok/FS4ZvqX2775jR/C93iUUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdy0hH7SHckCUhpRSlIwBbJRNIgGMAXSUR0CbDJnx8UmEdX2UKGgGaAloD0MImUf+YGBVbUCUhpRSlGgVS/xoFkdAmw0PD50r9XV9lChoBmgJaA9DCKfPDrguG3FAlIaUUpRoFUvhaBZHQJsNHjCHh0h1fZQoaAZoCWgPQwjuQnOdRpxyQJSGlFKUaBVNTQFoFkdAmw2DZHuqm3V9lChoBmgJaA9DCL3D7dAwEXJAlIaUUpRoFU0cAWgWR0CbDemEXcgydX2UKGgGaAloD0MIHTuoxHUicUCUhpRSlGgVS+JoFkdAmw4fjjrAxnV9lChoBmgJaA9DCJNxjGQPF3BAlIaUUpRoFU0GAWgWR0CbDvqdH2AYdX2UKGgGaAloD0MIEk4LXvTubkCUhpRSlGgVTRwBaBZHQJsPb6WPcSJ1fZQoaAZoCWgPQwgvMCsUqdRwQJSGlFKUaBVL9GgWR0CbD64EOiFkdX2UKGgGaAloD0MIy/RLxNvRbkCUhpRSlGgVS/toFkdAmw/rIo3JgnV9lChoBmgJaA9DCAEVjiDVpHFAlIaUUpRoFUv+aBZHQJsRLzmOlwd1fZQoaAZoCWgPQwhXsfhNIVdwQJSGlFKUaBVNFwFoFkdAmxHuRkmQbXV9lChoBmgJaA9DCMpOP6gLkXFAlIaUUpRoFUv2aBZHQJsSYMDwH7h1fZQoaAZoCWgPQwhSmzi5X59uQJSGlFKUaBVNBAFoFkdAmxNqNp/PPnV9lChoBmgJaA9DCHGTUWUYSW9AlIaUUpRoFUv5aBZHQJsTm6xxDLN1fZQoaAZoCWgPQwgCZylZzgBwQJSGlFKUaBVL+GgWR0CbE+haC+URdX2UKGgGaAloD0MI0XmNXaJRbUCUhpRSlGgVS/doFkdAmxRsrRSgoXV9lChoBmgJaA9DCPKXFvXJHXFAlIaUUpRoFUvkaBZHQJsUvxCpm291fZQoaAZoCWgPQwg7yOvBZN1wQJSGlFKUaBVNLgFoFkdAmxYsyi22HHV9lChoBmgJaA9DCLA6cqSzKnJAlIaUUpRoFU2zAWgWR0CbFldznzQNdX2UKGgGaAloD0MIxO47hsd9cUCUhpRSlGgVTSkBaBZHQJsWa2lVLjB1fZQoaAZoCWgPQwhGmKJcmklwQJSGlFKUaBVNAAFoFkdAmxayfcvdunV9lChoBmgJaA9DCFDIztuY/3FAlIaUUpRoFU0sAWgWR0CbFwm9g4OudX2UKGgGaAloD0MI3nTLDvH7cECUhpRSlGgVTQwBaBZHQJsXot8NQTF1fZQoaAZoCWgPQwgMk6mCEeVyQJSGlFKUaBVNFwFoFkdAmxgnRG+bmXV9lChoBmgJaA9DCDeOWIsPjXJAlIaUUpRoFUv4aBZHQJsYk1fmcON1fZQoaAZoCWgPQwhxcVRu4ppyQJSGlFKUaBVNFAFoFkdAmxoH6hxo7HV9lChoBmgJaA9DCOp1i8DY73BAlIaUUpRoFU0VAWgWR0CbGoGATZg5dX2UKGgGaAloD0MIpd3oY/4kc0CUhpRSlGgVTQEBaBZHQJsbCnm7rcF1fZQoaAZoCWgPQwhxPJ8BdV5vQJSGlFKUaBVL7WgWR0CbG4YODrZ8dX2UKGgGaAloD0MIQ8U4f5NUckCUhpRSlGgVTQ8BaBZHQJsbzw7T2Fp1fZQoaAZoCWgPQwjmstE5/w9yQJSGlFKUaBVNAgFoFkdAmxvevpyIYXV9lChoBmgJaA9DCJ5CrtQz1XBAlIaUUpRoFU0iAWgWR0CbG+oJiRW+dX2UKGgGaAloD0MIQE6YMNrecUCUhpRSlGgVS/BoFkdAmx19l7MPjHV9lChoBmgJaA9DCCEFTyHXiXFAlIaUUpRoFU0MAWgWR0CbHcGu9vjwdX2UKGgGaAloD0MItAWE1oMUcECUhpRSlGgVS/RoFkdAmx4IBBAv+XV9lChoBmgJaA9DCDemJywxA3FAlIaUUpRoFUvoaBZHQJseVlar3kB1fZQoaAZoCWgPQwi9cOfCyOZyQJSGlFKUaBVNGwFoFkdAmx5uVPepGXV9lChoBmgJaA9DCBjqsMKtSXJAlIaUUpRoFU0fAWgWR0CbHneV9nbqdX2UKGgGaAloD0MI0765vzqgcECUhpRSlGgVS+VoFkdAmzISzollb3V9lChoBmgJaA9DCIYb8PlhlW9AlIaUUpRoFU0IAWgWR0CbMombLEDRdX2UKGgGaAloD0MIgSbChqd2ckCUhpRSlGgVS/VoFkdAmzPRmseXA3V9lChoBmgJaA9DCDi+9sySr3FAlIaUUpRoFUv7aBZHQJs1WV/tpmF1fZQoaAZoCWgPQwiZm29E9zBuQJSGlFKUaBVNHgFoFkdAmzVsYAKfF3V9lChoBmgJaA9DCFOynIRSC3FAlIaUUpRoFU0BAWgWR0CbNeV7Qb++dX2UKGgGaAloD0MIJlXbTXA+cUCUhpRSlGgVTSEBaBZHQJs2DQmeDnN1fZQoaAZoCWgPQwimY84ztn9xQJSGlFKUaBVNCQFoFkdAmzYZxWDHwXV9lChoBmgJaA9DCD4ipkQSpHBAlIaUUpRoFU0gAWgWR0CbNq+98JD3dX2UKGgGaAloD0MISZ9W0R/mbUCUhpRSlGgVS/toFkdAmzdilzltCXV9lChoBmgJaA9DCPyqXKi8SnBAlIaUUpRoFUvxaBZHQJs3oaHbh3t1fZQoaAZoCWgPQwglA0AVN9ZxQJSGlFKUaBVL+GgWR0CbODO6NEPUdX2UKGgGaAloD0MIWYY41gUSc0CUhpRSlGgVTSIBaBZHQJs4ssxwhnt1fZQoaAZoCWgPQwhzvALRU/NyQJSGlFKUaBVNEAFoFkdAmzjDMaCL/HV9lChoBmgJaA9DCFKZYg6Cvm5AlIaUUpRoFUv+aBZHQJs5Hvuw5eZ1fZQoaAZoCWgPQwgEdF/O7KdxQJSGlFKUaBVNHAFoFkdAmzky0WuX/3V9lChoBmgJaA9DCNEeL6RDlHFAlIaUUpRoFU0BAWgWR0CbOaXdj5KwdX2UKGgGaAloD0MICisVVFT3b0CUhpRSlGgVS+poFkdAmzo+dsi0OXV9lChoBmgJaA9DCBi0kIARYHBAlIaUUpRoFU0BAWgWR0CbPHyLQ5WBdX2UKGgGaAloD0MIVu9wOzRLckCUhpRSlGgVS/poFkdAmzzYK2KEWnV9lChoBmgJaA9DCIYb8PmhSXBAlIaUUpRoFU0aAWgWR0CbPWdvbXYldX2UKGgGaAloD0MIklz+Q3qZckCUhpRSlGgVTQEBaBZHQJs9/PiT+vR1fZQoaAZoCWgPQwgXoG01K+BwQJSGlFKUaBVNHAFoFkdAmz4jbN8mbHV9lChoBmgJaA9DCFiqC3gZ/nBAlIaUUpRoFUv2aBZHQJs+oOMERrd1fZQoaAZoCWgPQwhxcVRuokJwQJSGlFKUaBVNBAFoFkdAmz7SaJAMUnV9lChoBmgJaA9DCIf6XdgaY2ZAlIaUUpRoFU3oA2gWR0CbPxAMUh3adX2UKGgGaAloD0MIZfuQt1yYckCUhpRSlGgVTTkBaBZHQJs/D6KtPpJ1fZQoaAZoCWgPQwh0DMheb6ZwQJSGlFKUaBVNDQFoFkdAmz/fLPldT3V9lChoBmgJaA9DCDOkiuLVIm5AlIaUUpRoFU0CAWgWR0CbQBhlDneSdX2UKGgGaAloD0MIB7e1hed5bECUhpRSlGgVS/hoFkdAm0BXSSeRP3V9lChoBmgJaA9DCE8+PbYlInBAlIaUUpRoFUvkaBZHQJtAWNZNfw91fZQoaAZoCWgPQwhxVG6iFjZuQJSGlFKUaBVNDQFoFkdAm0DEzoEB83V9lChoBmgJaA9DCJF7urpj4nFAlIaUUpRoFU0pAWgWR0CbQRco6S1WdX2UKGgGaAloD0MI7WRwlLzyckCUhpRSlGgVS/1oFkdAm0F/luFYdXV9lChoBmgJaA9DCDP60XBK325AlIaUUpRoFUvtaBZHQJtC+JKraM91fZQoaAZoCWgPQwhd3hyu1c1tQJSGlFKUaBVL8WgWR0CbQ16KLsKLdX2UKGgGaAloD0MI7+NojiymcECUhpRSlGgVS/loFkdAm0QdWZJCjXV9lChoBmgJaA9DCPiImBIJSnFAlIaUUpRoFUvuaBZHQJtFhrpJPIp1fZQoaAZoCWgPQwiLUkKwqs5vQJSGlFKUaBVL9GgWR0CbRb06HTJAdX2UKGgGaAloD0MIsfz5tqB3cUCUhpRSlGgVTRgBaBZHQJtFyILw4Kh1fZQoaAZoCWgPQwiKr3YUZ1xvQJSGlFKUaBVNEAFoFkdAm0YrlzU7S3V9lChoBmgJaA9DCNTwLawb9nJAlIaUUpRoFU0oAWgWR0CbRmeHBUJfdX2UKGgGaAloD0MI/bypSIX8b0CUhpRSlGgVTRgBaBZHQJtGkQRPGhp1fZQoaAZoCWgPQwgLKNTTxzpxQJSGlFKUaBVL7WgWR0CbRqAqur6tdX2UKGgGaAloD0MI2GZjJeYFc0CUhpRSlGgVS/poFkdAm0bDufEn9nV9lChoBmgJaA9DCNJyoIda7m9AlIaUUpRoFUvwaBZHQJtG68rZrYZ1fZQoaAZoCWgPQwh9k6ZB0RdzQJSGlFKUaBVL72gWR0CbR1UyYXwcdX2UKGgGaAloD0MINo/DYP6+bECUhpRSlGgVTSABaBZHQJtIDR2KVIJ1fZQoaAZoCWgPQwgktOVcShVwQJSGlFKUaBVNGwFoFkdAm0i7MkhRqHV9lChoBmgJaA9DCN5aJsPx2nFAlIaUUpRoFU0NAWgWR0CbSNO938oAdX2UKGgGaAloD0MIXtkFg2usckCUhpRSlGgVTREBaBZHQJtKcwGnn+11fZQoaAZoCWgPQwgpWrkXGCluQJSGlFKUaBVL92gWR0CbStEYfnwHdX2UKGgGaAloD0MIvhOzXswfcUCUhpRSlGgVTRMBaBZHQJtK7vYvnKZ1fZQoaAZoCWgPQwgPmfIhqB5XQJSGlFKUaBVL5WgWR0CbS6iuuA7QdX2UKGgGaAloD0MINrBVgsWYckCUhpRSlGgVTQYBaBZHQJtMdxsEaEV1fZQoaAZoCWgPQwif5A6biEFzQJSGlFKUaBVL+mgWR0CbTLFZgXuWdX2UKGgGaAloD0MImrFoOns+ckCUhpRSlGgVTQ4BaBZHQJtM42WIGhV1fZQoaAZoCWgPQwgt7j8yHRZzQJSGlFKUaBVL+2gWR0CbTPefZmI1dX2UKGgGaAloD0MIXRjpRa0+ckCUhpRSlGgVS+ZoFkdAm0zzg2qDLHV9lChoBmgJaA9DCCZtqu4Ru3BAlIaUUpRoFUvyaBZHQJtNGAH3UQV1fZQoaAZoCWgPQwjU1ohgHPlyQJSGlFKUaBVNGQFoFkdAm03x3zMA3nVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 372,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7af252b89b1be1d6f060423d4e08c4cd43ca6b0721f1c3079ba0dcfe0a29800f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffe91578118fd67ac6d80eafb6548e9154bd8c118a5996e098505d85666389a3
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.1485487951071, "std_reward": 21.307669690281596, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-02T19:14:52.000156"}