update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-large-uralic-voxpopuli-v2-finnish
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-large-uralic-voxpopuli-v2-finnish
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-uralic-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0828
|
18 |
+
- Wer: 0.1075
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 32
|
39 |
+
- eval_batch_size: 32
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 500
|
44 |
+
- num_epochs: 10
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 1.9421 | 0.17 | 500 | 0.8633 | 0.8870 |
|
52 |
+
| 0.572 | 0.33 | 1000 | 0.1650 | 0.1829 |
|
53 |
+
| 0.5149 | 0.5 | 1500 | 0.1416 | 0.1711 |
|
54 |
+
| 0.4884 | 0.66 | 2000 | 0.1265 | 0.1605 |
|
55 |
+
| 0.4729 | 0.83 | 2500 | 0.1205 | 0.1485 |
|
56 |
+
| 0.4723 | 1.0 | 3000 | 0.1108 | 0.1403 |
|
57 |
+
| 0.443 | 1.16 | 3500 | 0.1175 | 0.1439 |
|
58 |
+
| 0.4378 | 1.33 | 4000 | 0.1083 | 0.1482 |
|
59 |
+
| 0.4313 | 1.49 | 4500 | 0.1110 | 0.1398 |
|
60 |
+
| 0.4182 | 1.66 | 5000 | 0.1024 | 0.1418 |
|
61 |
+
| 0.3884 | 1.83 | 5500 | 0.1032 | 0.1395 |
|
62 |
+
| 0.4034 | 1.99 | 6000 | 0.0985 | 0.1318 |
|
63 |
+
| 0.3735 | 2.16 | 6500 | 0.1008 | 0.1355 |
|
64 |
+
| 0.4174 | 2.32 | 7000 | 0.0970 | 0.1361 |
|
65 |
+
| 0.3581 | 2.49 | 7500 | 0.0968 | 0.1297 |
|
66 |
+
| 0.3783 | 2.66 | 8000 | 0.0881 | 0.1284 |
|
67 |
+
| 0.3827 | 2.82 | 8500 | 0.0921 | 0.1352 |
|
68 |
+
| 0.3651 | 2.99 | 9000 | 0.0861 | 0.1298 |
|
69 |
+
| 0.3684 | 3.15 | 9500 | 0.0844 | 0.1270 |
|
70 |
+
| 0.3784 | 3.32 | 10000 | 0.0870 | 0.1248 |
|
71 |
+
| 0.356 | 3.48 | 10500 | 0.0828 | 0.1214 |
|
72 |
+
| 0.3524 | 3.65 | 11000 | 0.0878 | 0.1218 |
|
73 |
+
| 0.3879 | 3.82 | 11500 | 0.0874 | 0.1216 |
|
74 |
+
| 0.3521 | 3.98 | 12000 | 0.0860 | 0.1210 |
|
75 |
+
| 0.3527 | 4.15 | 12500 | 0.0818 | 0.1184 |
|
76 |
+
| 0.3529 | 4.31 | 13000 | 0.0787 | 0.1185 |
|
77 |
+
| 0.3114 | 4.48 | 13500 | 0.0852 | 0.1202 |
|
78 |
+
| 0.3495 | 4.65 | 14000 | 0.0807 | 0.1187 |
|
79 |
+
| 0.34 | 4.81 | 14500 | 0.0796 | 0.1162 |
|
80 |
+
| 0.3646 | 4.98 | 15000 | 0.0782 | 0.1149 |
|
81 |
+
| 0.3004 | 5.14 | 15500 | 0.0799 | 0.1142 |
|
82 |
+
| 0.3167 | 5.31 | 16000 | 0.0847 | 0.1123 |
|
83 |
+
| 0.3249 | 5.48 | 16500 | 0.0837 | 0.1171 |
|
84 |
+
| 0.3202 | 5.64 | 17000 | 0.0749 | 0.1109 |
|
85 |
+
| 0.3104 | 5.81 | 17500 | 0.0798 | 0.1093 |
|
86 |
+
| 0.3039 | 5.97 | 18000 | 0.0810 | 0.1132 |
|
87 |
+
| 0.3157 | 6.14 | 18500 | 0.0847 | 0.1156 |
|
88 |
+
| 0.3133 | 6.31 | 19000 | 0.0833 | 0.1140 |
|
89 |
+
| 0.3203 | 6.47 | 19500 | 0.0838 | 0.1113 |
|
90 |
+
| 0.3178 | 6.64 | 20000 | 0.0907 | 0.1141 |
|
91 |
+
| 0.3182 | 6.8 | 20500 | 0.0938 | 0.1143 |
|
92 |
+
| 0.3 | 6.97 | 21000 | 0.0854 | 0.1133 |
|
93 |
+
| 0.3151 | 7.14 | 21500 | 0.0859 | 0.1109 |
|
94 |
+
| 0.2963 | 7.3 | 22000 | 0.0832 | 0.1122 |
|
95 |
+
| 0.3099 | 7.47 | 22500 | 0.0865 | 0.1103 |
|
96 |
+
| 0.322 | 7.63 | 23000 | 0.0833 | 0.1105 |
|
97 |
+
| 0.3064 | 7.8 | 23500 | 0.0865 | 0.1078 |
|
98 |
+
| 0.2964 | 7.97 | 24000 | 0.0859 | 0.1096 |
|
99 |
+
| 0.2869 | 8.13 | 24500 | 0.0872 | 0.1100 |
|
100 |
+
| 0.315 | 8.3 | 25000 | 0.0869 | 0.1099 |
|
101 |
+
| 0.3003 | 8.46 | 25500 | 0.0878 | 0.1105 |
|
102 |
+
| 0.2947 | 8.63 | 26000 | 0.0884 | 0.1084 |
|
103 |
+
| 0.297 | 8.8 | 26500 | 0.0891 | 0.1102 |
|
104 |
+
| 0.3049 | 8.96 | 27000 | 0.0863 | 0.1081 |
|
105 |
+
| 0.2957 | 9.13 | 27500 | 0.0846 | 0.1083 |
|
106 |
+
| 0.2908 | 9.29 | 28000 | 0.0848 | 0.1059 |
|
107 |
+
| 0.2955 | 9.46 | 28500 | 0.0846 | 0.1085 |
|
108 |
+
| 0.2991 | 9.62 | 29000 | 0.0839 | 0.1081 |
|
109 |
+
| 0.3112 | 9.79 | 29500 | 0.0832 | 0.1071 |
|
110 |
+
| 0.29 | 9.96 | 30000 | 0.0828 | 0.1075 |
|
111 |
+
|
112 |
+
|
113 |
+
### Framework versions
|
114 |
+
|
115 |
+
- Transformers 4.19.2
|
116 |
+
- Pytorch 1.11.0+cu102
|
117 |
+
- Datasets 2.2.2
|
118 |
+
- Tokenizers 0.11.0
|