--- license: mit library_name: transformers base_model: nsi319/legal-led-base-16384 model-index: - name: results results: [] pipeline_tag: summarization --- # results This model is a fine-tuned version of [nsi319/legal-led-base-16384](https://huggingface.co/nsi319/legal-led-base-16384) on the joelniklaus/legal_case_document_summarization dataset. It achieves the following results on the evaluation set: - Loss: 2.7401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2 | 1.0 | 1924 | 2.8550 | | 3.6193 | 2.0 | 3848 | 2.7593 | | 2.7776 | 3.0 | 5772 | 2.7401 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0