FabioDataGeek commited on
Commit
3fd09f7
·
1 Parent(s): 6b1def2

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -157.26 +/- 59.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7609317a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe760931830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7609318c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe760931950>", "_build": "<function ActorCriticPolicy._build at 0x7fe7609319e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe760931a70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe760931b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe760931b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe760931c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe760931cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe760931d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe760931dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe7609ba5a0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683045063952090296, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAQJeevYMVnz9HQRO/UJknv9LlDj4K4q4+AAAAAAAAAAAGOFk+RyORP4qtOT/NBi2//p6Nu8qJyjsAAAAAAAAAABqqCL8vATc/7oCOv07qgr/iRI8/M8qBPgAAAAAAAAAAYPlYPu/5hz/Wdcs+EJYxv4F2Ab5U4h4+AAAAAAAAAABNeHk9FAeiP8tzxj7q5gW/ZLZ7PJh7Ej0AAAAAAAAAALN/aT0wf7Q/CZ0bP58TtL0SErO9qbmNvgAAAAAAAAAAgK4ZvTi4rD87myS/n0H1vimlQD30gT8+AAAAAAAAAACAO4Y9D9azPr3zb7wdao+/r55SPsVL27sAAAAAAAAAAGaSk7xxBr8/1jKUvYPoPD3PnmY6BrUzvAAAAAAAAAAAbUQIvl9mrT8fAgi/kXWjvpNQZD6Oa0g+AAAAAAAAAAAAjds9QAmYP44X0j5rUC2/v6ngvJK3uDsAAAAAAAAAACAUFT4fJJQ/HdQ3P/4LG78mlWy9yqabvQAAAAAAAAAAAMxVvAZHuz9P2LK9bWh5vCAsND2FY549AAAAAAAAAAAzwWc+cCKYPw/KlT4gcQS/bVP1PmA0zT4AAAAAAAAAAGa6zT3r4MQ/VhjdPkaW8j152mG9m33ivAAAAAAAAAAA8JKWvlKgpDyFMd6++2q5v5lHST7LaP49AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIym37HvUiVMCUhpRSlIwBbJRLRYwBdJRHQATQxvegte51fZQoaAZoCWgPQwjh7xezJbBjwJSGlFKUaBVLR2gWR0AE3O6d1+y7dX2UKGgGaAloD0MIKQZINIH8XcCUhpRSlGgVS0RoFkdABOFi8WbgCXV9lChoBmgJaA9DCNLijGFOEDHAlIaUUpRoFUtnaBZHQAUL3K0UoKF1fZQoaAZoCWgPQwgGoFG69DBswJSGlFKUaBVLTmgWR0AFH7pFCswMdX2UKGgGaAloD0MInzvB/uumY8CUhpRSlGgVS3ZoFkdABUlQdjoZAXV9lChoBmgJaA9DCMoZijvejErAlIaUUpRoFUtPaBZHQAWDwQUYbbV1fZQoaAZoCWgPQwh+i06WWl1zwJSGlFKUaBVLbWgWR0AFiDh99c8ldX2UKGgGaAloD0MIKCmwAKYTb8CUhpRSlGgVS1BoFkdABZCrLhaTwHV9lChoBmgJaA9DCHGOOjqu31jAlIaUUpRoFUtGaBZHQAWkal1r6+F1fZQoaAZoCWgPQwheEmdF1NJUwJSGlFKUaBVLPWgWR0AFrbah6By0dX2UKGgGaAloD0MI4NqJklDncMCUhpRSlGgVS0ZoFkdABcCPIXCTEHV9lChoBmgJaA9DCKCobFhTKWDAlIaUUpRoFUt2aBZHQAXPtUn5SFZ1fZQoaAZoCWgPQwjfo/56hdlhwJSGlFKUaBVLfmgWR0AF08HObAk+dX2UKGgGaAloD0MIRu7p6o64acCUhpRSlGgVS1RoFkdABe8RtgrpaHV9lChoBmgJaA9DCLtCHyzj9nPAlIaUUpRoFUtkaBZHQAX2aUiY9gZ1fZQoaAZoCWgPQwiZfol46/N+wJSGlFKUaBVLcGgWR0AGDKT0QK8ddX2UKGgGaAloD0MIbxCtFW30ecCUhpRSlGgVS3FoFkdABhb1RLsa9HV9lChoBmgJaA9DCN50yw7xNmzAlIaUUpRoFUtlaBZHQAY7uMMqjJx1fZQoaAZoCWgPQwhKCcGqevhdwJSGlFKUaBVLWWgWR0AGUvboKUmldX2UKGgGaAloD0MIzehHwymTH8CUhpRSlGgVS2toFkdABnub7TDwY3V9lChoBmgJaA9DCBxF1hrKKmDAlIaUUpRoFUtJaBZHQAaAxJul41R1fZQoaAZoCWgPQwgt0VlmkSRnwJSGlFKUaBVLXGgWR0AGiCtihFmWdX2UKGgGaAloD0MI4LpiRnjvW8CUhpRSlGgVS0poFkdABsq94/u9e3V9lChoBmgJaA9DCB2UMNP2GWjAlIaUUpRoFUtOaBZHQAbK8tf5ULl1fZQoaAZoCWgPQwjyP/m7N+R1wJSGlFKUaBVLWmgWR0AG2PJaJQ+EdX2UKGgGaAloD0MIi1OthVmmXMCUhpRSlGgVS0doFkdABufOlfqoqHV9lChoBmgJaA9DCNTyA1f5cmrAlIaUUpRoFUtyaBZHQAcWrn1WbPR1fZQoaAZoCWgPQwjWxW00gEpiwJSGlFKUaBVLaWgWR0AHFYOlO45MdX2UKGgGaAloD0MI/l915Mg8ZsCUhpRSlGgVS2JoFkdAByJQ+EAYHnV9lChoBmgJaA9DCDDzHfzEsFjAlIaUUpRoFUtPaBZHQAckFOfukUN1fZQoaAZoCWgPQwjzOuKQjSplwJSGlFKUaBVLgGgWR0AHPuy/sVtXdX2UKGgGaAloD0MIc4OhDivUPMCUhpRSlGgVSz9oFkdAB1SsKb8WK3V9lChoBmgJaA9DCCxHyECeuGbAlIaUUpRoFUtpaBZHQAefRNRFZxJ1fZQoaAZoCWgPQwgKaY1Bp95mwJSGlFKUaBVLeGgWR0AHpB/qgRK6dX2UKGgGaAloD0MINxYUBuXLcsCUhpRSlGgVS1hoFkdAB7Oj7ALy+nV9lChoBmgJaA9DCNGvrZ/++1jAlIaUUpRoFUtuaBZHQAfLpaA4GUx1fZQoaAZoCWgPQwhYj/tW6/tewJSGlFKUaBVLb2gWR0AH+k1uR9w4dX2UKGgGaAloD0MIFYvfFFbhd8CUhpRSlGgVS5poFkdAB/+m3vx6OnV9lChoBmgJaA9DCK00KQXdwFzAlIaUUpRoFUtSaBZHQAgD1Gsmv4d1fZQoaAZoCWgPQwgtzEI7p8NawJSGlFKUaBVLW2gWR0AIBwVCXyAhdX2UKGgGaAloD0MID2JnCp0rOUCUhpRSlGgVS0ZoFkdACAt4A0bcXXV9lChoBmgJaA9DCLgiMUHNUHnAlIaUUpRoFUtfaBZHQAghlMAWBSV1fZQoaAZoCWgPQwj/BBcrav94wJSGlFKUaBVLT2gWR0AIM9ECvHLidX2UKGgGaAloD0MI+5EiMqyjX8CUhpRSlGgVS1RoFkdACDfcer+5v3V9lChoBmgJaA9DCC3Q7pDiKmbAlIaUUpRoFUtuaBZHQAhHiWE9Mbp1fZQoaAZoCWgPQwjYZI16iFJUwJSGlFKUaBVLYGgWR0AIaYiPhhphdX2UKGgGaAloD0MIU1xV9l3aXsCUhpRSlGgVSz5oFkdACHeTmnwXqXV9lChoBmgJaA9DCFVpi2v8i23AlIaUUpRoFUtXaBZHQAja4lQdjoZ1fZQoaAZoCWgPQwg1m8dhMN8/wJSGlFKUaBVLfGgWR0AI/uiN83MqdX2UKGgGaAloD0MIuYrFb4rPb8CUhpRSlGgVS09oFkdACRDqnm7rcHV9lChoBmgJaA9DCMJPHEC/Xl7AlIaUUpRoFUtBaBZHQAkQv6CUX551fZQoaAZoCWgPQwjnq+Rjd5ZkwJSGlFKUaBVLcmgWR0AJKTdLxqfwdX2UKGgGaAloD0MI0hito6osXMCUhpRSlGgVS1xoFkdACTUipvP1MHV9lChoBmgJaA9DCHRd+MH5TVHAlIaUUpRoFUs8aBZHQAk7Ak9lmOF1fZQoaAZoCWgPQwiemWA41+t2wJSGlFKUaBVLZWgWR0AJWMIeHSF5dX2UKGgGaAloD0MIgNdnzvoIWcCUhpRSlGgVS5xoFkdACVl1bJOnEXV9lChoBmgJaA9DCL2o3a8C3FnAlIaUUpRoFUtVaBZHQAlcDbJwKjV1fZQoaAZoCWgPQwjq6/ma5dZiwJSGlFKUaBVLZmgWR0AJaDAaef7KdX2UKGgGaAloD0MI5bSn5JwjUcCUhpRSlGgVS0doFkdACXFx4ptrK3V9lChoBmgJaA9DCOLIA5FFgWTAlIaUUpRoFUtsaBZHQAl2kzoEB8x1fZQoaAZoCWgPQwhQc/IiE0JewJSGlFKUaBVLgGgWR0AJg9JSR8txdX2UKGgGaAloD0MIO/2gLlLLdsCUhpRSlGgVS2toFkdACY8aGYa5w3V9lChoBmgJaA9DCPW52or9uGTAlIaUUpRoFUtpaBZHQAmpPqLS/j91fZQoaAZoCWgPQwjncK32sMNSwJSGlFKUaBVLUGgWR0AKAzi0fHPvdX2UKGgGaAloD0MIVdy4xfzHVcCUhpRSlGgVSzpoFkdACg4n4O+ZgHV9lChoBmgJaA9DCAw7jEn/InXAlIaUUpRoFUthaBZHQAocCPp6hQF1fZQoaAZoCWgPQwi3fY/668lKwJSGlFKUaBVLQWgWR0AKKGi5/b0wdX2UKGgGaAloD0MIH7x2acNPWsCUhpRSlGgVSz9oFkdACjakAPuognV9lChoBmgJaA9DCFZJZB/kNGXAlIaUUpRoFUtgaBZHQApLbQC0WuZ1fZQoaAZoCWgPQwgoRSv3Aj9YwJSGlFKUaBVLZGgWR0AKbpV0cOsldX2UKGgGaAloD0MIfqt14nKjVcCUhpRSlGgVS1RoFkdACoIMz/IbO3V9lChoBmgJaA9DCCeJJeVu2HLAlIaUUpRoFUtdaBZHQAqTshPj4pN1fZQoaAZoCWgPQwg095Dwvb1YwJSGlFKUaBVLe2gWR0AKp5kbxVhkdX2UKGgGaAloD0MIkKM5svJlVcCUhpRSlGgVS3xoFkdACtW912aDw3V9lChoBmgJaA9DCLyQDg9hCFrAlIaUUpRoFUt1aBZHQArc2R7qptJ1fZQoaAZoCWgPQwgdcjPcwJx1wJSGlFKUaBVLX2gWR0AK6J2t+1BudX2UKGgGaAloD0MI3pGx2vzxZ8CUhpRSlGgVS3BoFkdACwPuG9HtnnV9lChoBmgJaA9DCK+V0F2So2XAlIaUUpRoFUtHaBZHQAsV+iJwbVB1fZQoaAZoCWgPQwiZYg6CDuJzwJSGlFKUaBVLj2gWR0ALFpXZGrjpdX2UKGgGaAloD0MIRrOyfcgdX8CUhpRSlGgVS3loFkdACxpItlI3BHV9lChoBmgJaA9DCACRfvs6cnDAlIaUUpRoFUtBaBZHQAser+5vtMR1fZQoaAZoCWgPQwjPoncq4MFXwJSGlFKUaBVLP2gWR0ALLEm6XjU/dX2UKGgGaAloD0MIdR2qKcmAbsCUhpRSlGgVS1VoFkdACzmL9/BnBnV9lChoBmgJaA9DCGak3lO5Zm/AlIaUUpRoFUtYaBZHQAs58BuGbkR1fZQoaAZoCWgPQwjNdoU+2Dd7wJSGlFKUaBVLV2gWR0ALVgH/tICmdX2UKGgGaAloD0MIGJY/35ZnZMCUhpRSlGgVS0FoFkdAC3P+n62v0XV9lChoBmgJaA9DCFWEm4yqcm7AlIaUUpRoFUtVaBZHQAujIq9XcQB1fZQoaAZoCWgPQwj/CMOApR9gwJSGlFKUaBVLZmgWR0ALyXnhbW3CdX2UKGgGaAloD0MIknajj3kuYMCUhpRSlGgVS1doFkdADAsYl6Z6U3V9lChoBmgJaA9DCPn2rkFfCVfAlIaUUpRoFUtNaBZHQAwVRk3CKrJ1fZQoaAZoCWgPQwghj+BGylRGwJSGlFKUaBVLS2gWR0AMFb3XZoPDdX2UKGgGaAloD0MIS3LAriZRa8CUhpRSlGgVS09oFkdADCJb+tKZlXV9lChoBmgJaA9DCKGhf4KLg1PAlIaUUpRoFUtRaBZHQAwnR9gF5fN1fZQoaAZoCWgPQwgvih74GBhQwJSGlFKUaBVLSGgWR0AMLBO58Sf2dX2UKGgGaAloD0MIduJyvIIbYsCUhpRSlGgVS2doFkdADD4tYjjaPHV9lChoBmgJaA9DCIE+kSfJLWjAlIaUUpRoFUtqaBZHQAxDDCP6sQx1fZQoaAZoCWgPQwiF61G4HtlfwJSGlFKUaBVLdmgWR0AMQbGWD6FedX2UKGgGaAloD0MIxt0gWuusdMCUhpRSlGgVS2JoFkdADFMAWBSUDHV9lChoBmgJaA9DCO8CJQUWP13AlIaUUpRoFUtXaBZHQAxfIsAeaKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-41-generic-x86_64-with-debian-11.6 # 42~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Apr 18 17:40:00 UTC 2", "Python": "3.7.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:befd1fdf428bd9e0307bd96cad872cd8360cb9ebb2cdae4b45327ae1f4372c60
3
+ size 147378
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7609317a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe760931830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7609318c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe760931950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe7609319e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe760931a70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe760931b00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe760931b90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe760931c20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe760931cb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe760931d40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe760931dd0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe7609ba5a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 1000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683045063952090296,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAQJeevYMVnz9HQRO/UJknv9LlDj4K4q4+AAAAAAAAAAAGOFk+RyORP4qtOT/NBi2//p6Nu8qJyjsAAAAAAAAAABqqCL8vATc/7oCOv07qgr/iRI8/M8qBPgAAAAAAAAAAYPlYPu/5hz/Wdcs+EJYxv4F2Ab5U4h4+AAAAAAAAAABNeHk9FAeiP8tzxj7q5gW/ZLZ7PJh7Ej0AAAAAAAAAALN/aT0wf7Q/CZ0bP58TtL0SErO9qbmNvgAAAAAAAAAAgK4ZvTi4rD87myS/n0H1vimlQD30gT8+AAAAAAAAAACAO4Y9D9azPr3zb7wdao+/r55SPsVL27sAAAAAAAAAAGaSk7xxBr8/1jKUvYPoPD3PnmY6BrUzvAAAAAAAAAAAbUQIvl9mrT8fAgi/kXWjvpNQZD6Oa0g+AAAAAAAAAAAAjds9QAmYP44X0j5rUC2/v6ngvJK3uDsAAAAAAAAAACAUFT4fJJQ/HdQ3P/4LG78mlWy9yqabvQAAAAAAAAAAAMxVvAZHuz9P2LK9bWh5vCAsND2FY549AAAAAAAAAAAzwWc+cCKYPw/KlT4gcQS/bVP1PmA0zT4AAAAAAAAAAGa6zT3r4MQ/VhjdPkaW8j152mG9m33ivAAAAAAAAAAA8JKWvlKgpDyFMd6++2q5v5lHST7LaP49AAAAAAAAAACUdJRiLg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -15.384,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIym37HvUiVMCUhpRSlIwBbJRLRYwBdJRHQATQxvegte51fZQoaAZoCWgPQwjh7xezJbBjwJSGlFKUaBVLR2gWR0AE3O6d1+y7dX2UKGgGaAloD0MIKQZINIH8XcCUhpRSlGgVS0RoFkdABOFi8WbgCXV9lChoBmgJaA9DCNLijGFOEDHAlIaUUpRoFUtnaBZHQAUL3K0UoKF1fZQoaAZoCWgPQwgGoFG69DBswJSGlFKUaBVLTmgWR0AFH7pFCswMdX2UKGgGaAloD0MInzvB/uumY8CUhpRSlGgVS3ZoFkdABUlQdjoZAXV9lChoBmgJaA9DCMoZijvejErAlIaUUpRoFUtPaBZHQAWDwQUYbbV1fZQoaAZoCWgPQwh+i06WWl1zwJSGlFKUaBVLbWgWR0AFiDh99c8ldX2UKGgGaAloD0MIKCmwAKYTb8CUhpRSlGgVS1BoFkdABZCrLhaTwHV9lChoBmgJaA9DCHGOOjqu31jAlIaUUpRoFUtGaBZHQAWkal1r6+F1fZQoaAZoCWgPQwheEmdF1NJUwJSGlFKUaBVLPWgWR0AFrbah6By0dX2UKGgGaAloD0MI4NqJklDncMCUhpRSlGgVS0ZoFkdABcCPIXCTEHV9lChoBmgJaA9DCKCobFhTKWDAlIaUUpRoFUt2aBZHQAXPtUn5SFZ1fZQoaAZoCWgPQwjfo/56hdlhwJSGlFKUaBVLfmgWR0AF08HObAk+dX2UKGgGaAloD0MIRu7p6o64acCUhpRSlGgVS1RoFkdABe8RtgrpaHV9lChoBmgJaA9DCLtCHyzj9nPAlIaUUpRoFUtkaBZHQAX2aUiY9gZ1fZQoaAZoCWgPQwiZfol46/N+wJSGlFKUaBVLcGgWR0AGDKT0QK8ddX2UKGgGaAloD0MIbxCtFW30ecCUhpRSlGgVS3FoFkdABhb1RLsa9HV9lChoBmgJaA9DCN50yw7xNmzAlIaUUpRoFUtlaBZHQAY7uMMqjJx1fZQoaAZoCWgPQwhKCcGqevhdwJSGlFKUaBVLWWgWR0AGUvboKUmldX2UKGgGaAloD0MIzehHwymTH8CUhpRSlGgVS2toFkdABnub7TDwY3V9lChoBmgJaA9DCBxF1hrKKmDAlIaUUpRoFUtJaBZHQAaAxJul41R1fZQoaAZoCWgPQwgt0VlmkSRnwJSGlFKUaBVLXGgWR0AGiCtihFmWdX2UKGgGaAloD0MI4LpiRnjvW8CUhpRSlGgVS0poFkdABsq94/u9e3V9lChoBmgJaA9DCB2UMNP2GWjAlIaUUpRoFUtOaBZHQAbK8tf5ULl1fZQoaAZoCWgPQwjyP/m7N+R1wJSGlFKUaBVLWmgWR0AG2PJaJQ+EdX2UKGgGaAloD0MIi1OthVmmXMCUhpRSlGgVS0doFkdABufOlfqoqHV9lChoBmgJaA9DCNTyA1f5cmrAlIaUUpRoFUtyaBZHQAcWrn1WbPR1fZQoaAZoCWgPQwjWxW00gEpiwJSGlFKUaBVLaWgWR0AHFYOlO45MdX2UKGgGaAloD0MI/l915Mg8ZsCUhpRSlGgVS2JoFkdAByJQ+EAYHnV9lChoBmgJaA9DCDDzHfzEsFjAlIaUUpRoFUtPaBZHQAckFOfukUN1fZQoaAZoCWgPQwjzOuKQjSplwJSGlFKUaBVLgGgWR0AHPuy/sVtXdX2UKGgGaAloD0MIc4OhDivUPMCUhpRSlGgVSz9oFkdAB1SsKb8WK3V9lChoBmgJaA9DCCxHyECeuGbAlIaUUpRoFUtpaBZHQAefRNRFZxJ1fZQoaAZoCWgPQwgKaY1Bp95mwJSGlFKUaBVLeGgWR0AHpB/qgRK6dX2UKGgGaAloD0MINxYUBuXLcsCUhpRSlGgVS1hoFkdAB7Oj7ALy+nV9lChoBmgJaA9DCNGvrZ/++1jAlIaUUpRoFUtuaBZHQAfLpaA4GUx1fZQoaAZoCWgPQwhYj/tW6/tewJSGlFKUaBVLb2gWR0AH+k1uR9w4dX2UKGgGaAloD0MIFYvfFFbhd8CUhpRSlGgVS5poFkdAB/+m3vx6OnV9lChoBmgJaA9DCK00KQXdwFzAlIaUUpRoFUtSaBZHQAgD1Gsmv4d1fZQoaAZoCWgPQwgtzEI7p8NawJSGlFKUaBVLW2gWR0AIBwVCXyAhdX2UKGgGaAloD0MID2JnCp0rOUCUhpRSlGgVS0ZoFkdACAt4A0bcXXV9lChoBmgJaA9DCLgiMUHNUHnAlIaUUpRoFUtfaBZHQAghlMAWBSV1fZQoaAZoCWgPQwj/BBcrav94wJSGlFKUaBVLT2gWR0AIM9ECvHLidX2UKGgGaAloD0MI+5EiMqyjX8CUhpRSlGgVS1RoFkdACDfcer+5v3V9lChoBmgJaA9DCC3Q7pDiKmbAlIaUUpRoFUtuaBZHQAhHiWE9Mbp1fZQoaAZoCWgPQwjYZI16iFJUwJSGlFKUaBVLYGgWR0AIaYiPhhphdX2UKGgGaAloD0MIU1xV9l3aXsCUhpRSlGgVSz5oFkdACHeTmnwXqXV9lChoBmgJaA9DCFVpi2v8i23AlIaUUpRoFUtXaBZHQAja4lQdjoZ1fZQoaAZoCWgPQwg1m8dhMN8/wJSGlFKUaBVLfGgWR0AI/uiN83MqdX2UKGgGaAloD0MIuYrFb4rPb8CUhpRSlGgVS09oFkdACRDqnm7rcHV9lChoBmgJaA9DCMJPHEC/Xl7AlIaUUpRoFUtBaBZHQAkQv6CUX551fZQoaAZoCWgPQwjnq+Rjd5ZkwJSGlFKUaBVLcmgWR0AJKTdLxqfwdX2UKGgGaAloD0MI0hito6osXMCUhpRSlGgVS1xoFkdACTUipvP1MHV9lChoBmgJaA9DCHRd+MH5TVHAlIaUUpRoFUs8aBZHQAk7Ak9lmOF1fZQoaAZoCWgPQwiemWA41+t2wJSGlFKUaBVLZWgWR0AJWMIeHSF5dX2UKGgGaAloD0MIgNdnzvoIWcCUhpRSlGgVS5xoFkdACVl1bJOnEXV9lChoBmgJaA9DCL2o3a8C3FnAlIaUUpRoFUtVaBZHQAlcDbJwKjV1fZQoaAZoCWgPQwjq6/ma5dZiwJSGlFKUaBVLZmgWR0AJaDAaef7KdX2UKGgGaAloD0MI5bSn5JwjUcCUhpRSlGgVS0doFkdACXFx4ptrK3V9lChoBmgJaA9DCOLIA5FFgWTAlIaUUpRoFUtsaBZHQAl2kzoEB8x1fZQoaAZoCWgPQwhQc/IiE0JewJSGlFKUaBVLgGgWR0AJg9JSR8txdX2UKGgGaAloD0MIO/2gLlLLdsCUhpRSlGgVS2toFkdACY8aGYa5w3V9lChoBmgJaA9DCPW52or9uGTAlIaUUpRoFUtpaBZHQAmpPqLS/j91fZQoaAZoCWgPQwjncK32sMNSwJSGlFKUaBVLUGgWR0AKAzi0fHPvdX2UKGgGaAloD0MIVdy4xfzHVcCUhpRSlGgVSzpoFkdACg4n4O+ZgHV9lChoBmgJaA9DCAw7jEn/InXAlIaUUpRoFUthaBZHQAocCPp6hQF1fZQoaAZoCWgPQwi3fY/668lKwJSGlFKUaBVLQWgWR0AKKGi5/b0wdX2UKGgGaAloD0MIH7x2acNPWsCUhpRSlGgVSz9oFkdACjakAPuognV9lChoBmgJaA9DCFZJZB/kNGXAlIaUUpRoFUtgaBZHQApLbQC0WuZ1fZQoaAZoCWgPQwgoRSv3Aj9YwJSGlFKUaBVLZGgWR0AKbpV0cOsldX2UKGgGaAloD0MIfqt14nKjVcCUhpRSlGgVS1RoFkdACoIMz/IbO3V9lChoBmgJaA9DCCeJJeVu2HLAlIaUUpRoFUtdaBZHQAqTshPj4pN1fZQoaAZoCWgPQwg095Dwvb1YwJSGlFKUaBVLe2gWR0AKp5kbxVhkdX2UKGgGaAloD0MIkKM5svJlVcCUhpRSlGgVS3xoFkdACtW912aDw3V9lChoBmgJaA9DCLyQDg9hCFrAlIaUUpRoFUt1aBZHQArc2R7qptJ1fZQoaAZoCWgPQwgdcjPcwJx1wJSGlFKUaBVLX2gWR0AK6J2t+1BudX2UKGgGaAloD0MI3pGx2vzxZ8CUhpRSlGgVS3BoFkdACwPuG9HtnnV9lChoBmgJaA9DCK+V0F2So2XAlIaUUpRoFUtHaBZHQAsV+iJwbVB1fZQoaAZoCWgPQwiZYg6CDuJzwJSGlFKUaBVLj2gWR0ALFpXZGrjpdX2UKGgGaAloD0MIRrOyfcgdX8CUhpRSlGgVS3loFkdACxpItlI3BHV9lChoBmgJaA9DCACRfvs6cnDAlIaUUpRoFUtBaBZHQAser+5vtMR1fZQoaAZoCWgPQwjPoncq4MFXwJSGlFKUaBVLP2gWR0ALLEm6XjU/dX2UKGgGaAloD0MIdR2qKcmAbsCUhpRSlGgVS1VoFkdACzmL9/BnBnV9lChoBmgJaA9DCGak3lO5Zm/AlIaUUpRoFUtYaBZHQAs58BuGbkR1fZQoaAZoCWgPQwjNdoU+2Dd7wJSGlFKUaBVLV2gWR0ALVgH/tICmdX2UKGgGaAloD0MIGJY/35ZnZMCUhpRSlGgVS0FoFkdAC3P+n62v0XV9lChoBmgJaA9DCFWEm4yqcm7AlIaUUpRoFUtVaBZHQAujIq9XcQB1fZQoaAZoCWgPQwj/CMOApR9gwJSGlFKUaBVLZmgWR0ALyXnhbW3CdX2UKGgGaAloD0MIknajj3kuYMCUhpRSlGgVS1doFkdADAsYl6Z6U3V9lChoBmgJaA9DCPn2rkFfCVfAlIaUUpRoFUtNaBZHQAwVRk3CKrJ1fZQoaAZoCWgPQwghj+BGylRGwJSGlFKUaBVLS2gWR0AMFb3XZoPDdX2UKGgGaAloD0MIS3LAriZRa8CUhpRSlGgVS09oFkdADCJb+tKZlXV9lChoBmgJaA9DCKGhf4KLg1PAlIaUUpRoFUtRaBZHQAwnR9gF5fN1fZQoaAZoCWgPQwgvih74GBhQwJSGlFKUaBVLSGgWR0AMLBO58Sf2dX2UKGgGaAloD0MIduJyvIIbYsCUhpRSlGgVS2doFkdADD4tYjjaPHV9lChoBmgJaA9DCIE+kSfJLWjAlIaUUpRoFUtqaBZHQAxDDCP6sQx1fZQoaAZoCWgPQwiF61G4HtlfwJSGlFKUaBVLdmgWR0AMQbGWD6FedX2UKGgGaAloD0MIxt0gWuusdMCUhpRSlGgVS2JoFkdADFMAWBSUDHV9lChoBmgJaA9DCO8CJQUWP13AlIaUUpRoFUtXaBZHQAxfIsAeaKF1ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 10,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.99,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 32,
88
+ "n_epochs": 10,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cee1d0c6f1478a13cbc405b82a1b055ef36cff0749a61499b9526808091c28f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:981ddafdf43a8c2cc988e1a3b2cad7edfdc18c579783cd701e3aee27755fec4f
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-41-generic-x86_64-with-debian-11.6 # 42~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Apr 18 17:40:00 UTC 2
2
+ - Python: 3.7.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (273 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -157.25674853099773, "std_reward": 59.849852351389295, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-02T16:31:18.311113"}