LunarLander-v2 / config.json
FabioDataGeek's picture
Upload PPO LunarLander-v2 trained agent
f71d31c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdfa423a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdfa423a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdfa423a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdfa423a950>", "_build": "<function ActorCriticPolicy._build at 0x7fdfa423a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdfa423aa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdfa423ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdfa423ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdfa423ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdfa423acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdfa423ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdfa423add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdfa42c35a0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683045166065488154, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAwESLPbnZKT4UAz2+G7xmvjIvir0BmLq9AAAAAAAAAADAl8O9WzCUPSkazD1Xkpy+lq3/PdZOx70AAAAAAAAAAFqMkb3Gf0A/7KDMO75qxL7QpIq9KriaPAAAAAAAAAAAwx1Nvkpa7z6evts+p53XvonNzr0yyJY+AAAAAAAAAADT0h0+vHE/PyKHm7w1MNW+Mu41PnU02rwAAAAAAAAAAAAmMLzS28O7PgeBvfE3UDyyjhs9U6syvQAAgD8AAIA/cxkEvhvKtT9TlMO+TfLNvqPWP75Ofza+AAAAAAAAAADtvSi+urL5Pp7EBT45cNC+MJKjvStWlD0AAAAAAAAAAM2E8juPRmO6WKfeO/uvNTnH9li7JlkvOAAAgD8AAIA/WuHcPWZCzT6GyUi+fiLBvhrajjueN/69AAAAAAAAAABNIFC9FC6LuhFyCDUcS30wJyQ1O02kabQAAIA/AACAP0B1Dz5W3tE+ynCRvmTa275wRdk904b4vQAAAAAAAAAAMyRoPs5lGD8CBAO9ZQr7vrLjhj72Ig6+AAAAAAAAAABT9xK+gNpvPyaWQb5RwvC+RFRdvib2j70AAAAAAAAAAE1HvD2fdVs+/vGIvstgjL4hl8q96g4GvQAAAAAAAAAAZrJLvH3rQj7m+ka+zMdWvhC8GL6j32e9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIey++aE+EckCUhpRSlIwBbJRL5owBdJRHQI6/3nIQvpR1fZQoaAZoCWgPQwijryDN2MRtQJSGlFKUaBVNCgFoFkdAjsA8UuctoXV9lChoBmgJaA9DCFuyKsJNAnFAlIaUUpRoFUvZaBZHQI7ARFmWdEt1fZQoaAZoCWgPQwhYx/FDZZlxQJSGlFKUaBVL8mgWR0COwIwpvxYrdX2UKGgGaAloD0MI5+RFJuBZc0CUhpRSlGgVS9loFkdAjsFL9l2/z3V9lChoBmgJaA9DCPc5PlpcRHBAlIaUUpRoFUv6aBZHQI7BgEbHZK51fZQoaAZoCWgPQwjj4xOys7pyQJSGlFKUaBVLzmgWR0COwbqFh5PedX2UKGgGaAloD0MIyLH1DGE/c0CUhpRSlGgVS/1oFkdAjsMahHskZHV9lChoBmgJaA9DCG3healYYXJAlIaUUpRoFUvvaBZHQI7DKdH2AXl1fZQoaAZoCWgPQwiJtI0/kTNwQJSGlFKUaBVL6mgWR0COwz5Rjz7NdX2UKGgGaAloD0MIFHr9SbyVcUCUhpRSlGgVS/NoFkdAjsNbWd3B6HV9lChoBmgJaA9DCDAqqRPQGXJAlIaUUpRoFUvyaBZHQI7E60lZ5iV1fZQoaAZoCWgPQwgi/mFLDxBxQJSGlFKUaBVLzmgWR0COxRjuKGcndX2UKGgGaAloD0MIa2YtBSSAcUCUhpRSlGgVTQYBaBZHQI7FKIHkcS51fZQoaAZoCWgPQwhzhAzk2QNwQJSGlFKUaBVNFQFoFkdAjsWe4kNWl3V9lChoBmgJaA9DCM3K9iFvFW5AlIaUUpRoFUv8aBZHQI7Fu3BpHqh1fZQoaAZoCWgPQwjc8pGUNEtyQJSGlFKUaBVL2WgWR0COxc9JSR8udX2UKGgGaAloD0MIJGQgzy7BbkCUhpRSlGgVS9VoFkdAjsYBcZ9/jXV9lChoBmgJaA9DCCWwOQcPYnJAlIaUUpRoFUvqaBZHQI7GLwc5sCV1fZQoaAZoCWgPQwipwp/hTaBvQJSGlFKUaBVL42gWR0COxwRdQfp2dX2UKGgGaAloD0MIqvQTzm6YY0CUhpRSlGgVTegDaBZHQI7HxR2r4nF1fZQoaAZoCWgPQwidnQyOUtBxQJSGlFKUaBVNGwFoFkdAjsj/oA4n4XV9lChoBmgJaA9DCEXylUBKH21AlIaUUpRoFUviaBZHQI7JFw97ngZ1fZQoaAZoCWgPQwj+1Hjp5qRyQJSGlFKUaBVL8GgWR0COyWIWP91mdX2UKGgGaAloD0MIYW2MnfDbcUCUhpRSlGgVS/1oFkdAjsmr7O3UhHV9lChoBmgJaA9DCKVpUDSP+nFAlIaUUpRoFUv3aBZHQI7JwLCvX9R1fZQoaAZoCWgPQwhQbtv36LNxQJSGlFKUaBVNTwFoFkdAjsobx3FDOXV9lChoBmgJaA9DCGUdjq6SCHJAlIaUUpRoFUvVaBZHQI7KfxBmf5F1fZQoaAZoCWgPQwjhehSuxwFxQJSGlFKUaBVL02gWR0COyoAGSpzcdX2UKGgGaAloD0MIhdGsbB8CckCUhpRSlGgVS+NoFkdAjsqrQgLZz3V9lChoBmgJaA9DCNwqiIFuinNAlIaUUpRoFUvUaBZHQI7K9XV9Wp91fZQoaAZoCWgPQwi71XPS+/tuQJSGlFKUaBVL3WgWR0COyxGFzuF6dX2UKGgGaAloD0MIV7Q5zq0QckCUhpRSlGgVS9doFkdAjyWD5sTFl3V9lChoBmgJaA9DCDRLAtRUFnFAlIaUUpRoFUvjaBZHQI8l4vL5h0B1fZQoaAZoCWgPQwhlAKjiBs1wQJSGlFKUaBVL+GgWR0CPJfwFTvRadX2UKGgGaAloD0MIpu81BAeDckCUhpRSlGgVS+JoFkdAjyaCr1dxAHV9lChoBmgJaA9DCOaQ1EJJIHNAlIaUUpRoFUvNaBZHQI8mpv99+gF1fZQoaAZoCWgPQwjLSSh9oX9xQJSGlFKUaBVL22gWR0CPJ95yEL6UdX2UKGgGaAloD0MIN/+vOvKHcUCUhpRSlGgVS+RoFkdAjyhUYKpkw3V9lChoBmgJaA9DCHcTfNN0NnFAlIaUUpRoFUv3aBZHQI8oc8ox59p1fZQoaAZoCWgPQwi9iowOiG9wQJSGlFKUaBVL92gWR0CPKSMBp5/tdX2UKGgGaAloD0MItHbbhebpckCUhpRSlGgVS/xoFkdAjykwOOKfnXV9lChoBmgJaA9DCNuGURB8n3BAlIaUUpRoFUvkaBZHQI8pc2eg+Ql1fZQoaAZoCWgPQwhtVRLZh5JxQJSGlFKUaBVL/2gWR0CPKayRjjJddX2UKGgGaAloD0MIAP+UKpGOcUCUhpRSlGgVS99oFkdAjynfh/Aj6nV9lChoBmgJaA9DCFMkXwmkfnBAlIaUUpRoFUv8aBZHQI8qCdat9x91fZQoaAZoCWgPQwieJF0z+dFtQJSGlFKUaBVL5mgWR0CPKiVEd/8VdX2UKGgGaAloD0MInx7bMiD2cECUhpRSlGgVS/toFkdAjyrMYVIqb3V9lChoBmgJaA9DCGL1RxjGW3JAlIaUUpRoFUvFaBZHQI8q2c6Nly11fZQoaAZoCWgPQwgh6j4A6SdzQJSGlFKUaBVNNgFoFkdAjyt/HHWBjHV9lChoBmgJaA9DCHlafuAqWHJAlIaUUpRoFU0HAWgWR0CPK6JDVpbmdX2UKGgGaAloD0MI8mCL3f47cECUhpRSlGgVTRABaBZHQI8ruGj9GZx1fZQoaAZoCWgPQwiqZWt90U5xQJSGlFKUaBVL6GgWR0CPK8vmHP/rdX2UKGgGaAloD0MIduPdkXFrcECUhpRSlGgVS85oFkdAjyzdYGMXJ3V9lChoBmgJaA9DCATG+gamuG9AlIaUUpRoFUvQaBZHQI8tBe9i+cp1fZQoaAZoCWgPQwgAWB05EsdzQJSGlFKUaBVL+2gWR0CPLWTN+so2dX2UKGgGaAloD0MI7X+AteqjcUCUhpRSlGgVS+ZoFkdAjy4QQL/jsHV9lChoBmgJaA9DCFUWhV0U0nBAlIaUUpRoFUvRaBZHQI8uFpqREF51fZQoaAZoCWgPQwg0EqERbEFxQJSGlFKUaBVNFAFoFkdAjy8yeyzHCHV9lChoBmgJaA9DCKzgtyEGcHBAlIaUUpRoFUv1aBZHQI8vTcXWOIZ1fZQoaAZoCWgPQwgwhJz3/5FwQJSGlFKUaBVL/WgWR0CPL1U0elsQdX2UKGgGaAloD0MIkJ4ih0iCcECUhpRSlGgVS9RoFkdAjy9b+kxh2HV9lChoBmgJaA9DCFWhgVg2U3JAlIaUUpRoFUv1aBZHQI8vbOE/Spl1fZQoaAZoCWgPQwjQ8jy4e4RyQJSGlFKUaBVL22gWR0CPL4vqTr3TdX2UKGgGaAloD0MIvwtbsxWXcECUhpRSlGgVTTEBaBZHQI8wDu2JBPd1fZQoaAZoCWgPQwgVyOwsuhxwQJSGlFKUaBVL2GgWR0CPMDKGL1mKdX2UKGgGaAloD0MIYaqZtZQub0CUhpRSlGgVS+BoFkdAjzBvjOs1bnV9lChoBmgJaA9DCIPDCyJSjm9AlIaUUpRoFUvkaBZHQI8wlwvQF9t1fZQoaAZoCWgPQwgU56ijoztxQJSGlFKUaBVNFQFoFkdAjzFJkwvg33V9lChoBmgJaA9DCF+2nbaGwXFAlIaUUpRoFUvOaBZHQI8xy08eS0V1fZQoaAZoCWgPQwiGHFvPEJNvQJSGlFKUaBVL92gWR0CPMimAskIHdX2UKGgGaAloD0MIlX1XBP8AcUCUhpRSlGgVS/RoFkdAjzJB1DBuXXV9lChoBmgJaA9DCO+qB8zDjnJAlIaUUpRoFUvjaBZHQI8y8w5/9YR1fZQoaAZoCWgPQwjiV6zhYnFxQJSGlFKUaBVNAAFoFkdAjzOp5E+gUXV9lChoBmgJaA9DCA+BI4GGXXJAlIaUUpRoFUvZaBZHQI80AFvAGjd1fZQoaAZoCWgPQwgI5ujxuz9xQJSGlFKUaBVL4GgWR0CPNCcABDG+dX2UKGgGaAloD0MImpZYGY0hb0CUhpRSlGgVS+FoFkdAjzRGsV+I/XV9lChoBmgJaA9DCNRfr7BgEnNAlIaUUpRoFUvcaBZHQI80TU7Sy+p1fZQoaAZoCWgPQwh56LtbmfdxQJSGlFKUaBVL8mgWR0CPNIe05U97dX2UKGgGaAloD0MIJUBNLZuGcUCUhpRSlGgVS/poFkdAjzSbSZ0CBHV9lChoBmgJaA9DCEXXhR8cn3BAlIaUUpRoFUvHaBZHQI80wRK6Fuh1fZQoaAZoCWgPQwiEgHwJFdZwQJSGlFKUaBVL32gWR0CPNNZyMkyDdX2UKGgGaAloD0MI5llJK/7+cUCUhpRSlGgVS/BoFkdAjzVAVGkN4XV9lChoBmgJaA9DCLTHC+kw+HJAlIaUUpRoFUvxaBZHQI81orpaA4J1fZQoaAZoCWgPQwjLgLOUbAZxQJSGlFKUaBVL+WgWR0CPNn8lXzUadX2UKGgGaAloD0MIn69ZLlsqcECUhpRSlGgVS9poFkdAjzawSzw+dXV9lChoBmgJaA9DCPSmIhWGAnFAlIaUUpRoFU0IAWgWR0CPN1jkMkQgdX2UKGgGaAloD0MIBHP0+D2vbkCUhpRSlGgVS/doFkdAjzdqiGnGbXV9lChoBmgJaA9DCNmxEYjXNHBAlIaUUpRoFUvgaBZHQI84UJtzjm11fZQoaAZoCWgPQwgkRs8t9FNxQJSGlFKUaBVL2WgWR0CPOHwaR6njdX2UKGgGaAloD0MIezL/6JuScECUhpRSlGgVTQUBaBZHQI84fc1wYLt1fZQoaAZoCWgPQwink2x1eatyQJSGlFKUaBVL02gWR0CPOJoexOcldX2UKGgGaAloD0MIFMstrYbGcUCUhpRSlGgVS+FoFkdAjzkks8PnS3V9lChoBmgJaA9DCOmAJOwbAXNAlIaUUpRoFUvyaBZHQI85Jib2Dg91fZQoaAZoCWgPQwh3nnjO1jBxQJSGlFKUaBVL4GgWR0CPOXoV2zOYdX2UKGgGaAloD0MI02hyMUaIcUCUhpRSlGgVS+loFkdAjzmOzY287XV9lChoBmgJaA9DCOZZSSs+wW9AlIaUUpRoFU0AAWgWR0CPOY+i8FpxdX2UKGgGaAloD0MIVn4ZjJGkc0CUhpRSlGgVS9NoFkdAjzmtI9TxXnV9lChoBmgJaA9DCNbFbTRABXJAlIaUUpRoFU0PAWgWR0CPOhS1maphdX2UKGgGaAloD0MIrcJmgAtmbkCUhpRSlGgVS+NoFkdAjzpYa5wwTXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-41-generic-x86_64-with-debian-11.6 # 42~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Apr 18 17:40:00 UTC 2", "Python": "3.7.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}