{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3fcd84eea0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674302305421037834, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANpemL8Qvpa/MrdAPVfmGz8OT9C/ZFR4P9gIR74YitK8tRMGP8lpAr5+PfS+pspTPUwUrL9VIwA80zjtPkX1Jb/PYSi/9Emrv0q/Rj8cKUC+5QWdvtaCib+tTJG/W3pfO1aNhT8kDRY/mfAOP2TNfL/I0ZU/w4jevb8EBT9ZCLO/8YPOvs5P5cAkg+a+5LibP0ucAT/mb9G9v3UXv73cZD+AEsG/iG40O3eHYz/zo7K8VnsEPwoLnL8ow5O/6op5wCgCjT7861a/0zKvv0ePiryAW3W/62Dav0k+5b9kzXy/G8yMv1ELp7/nX6K9WWXtPjod3L43waM+wDuvvr/0L77/UwI/QYj7vMdr/r7ViD4+fwuCv+KDQD8B9Ck/4YfBPoDemL4P62G8T2wjPz4uFT8gHSI90aR0vjV/T7+cf5s/Vo2FPyQNFj+Z8A4/ZM18vzouuL/F85W/J/xXPWhfDj5/CTi+BLMAPwi76LxwS+U+kSvuPoa+IEAugiS/yzAiP+UCs796SX8+14VVPwJOB79Tuh09ZrXkvVAQAT8qKYU/bBecvk1guz/REpG/ZpsvvlaNhT/rYNq/mfAOP2TNfL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD3Bau2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARvCzPQAAAACzY/y/AAAAAJ8j0r0AAAAAQSD0PwAAAADE5549AAAAAJ/r2z8AAAAAYN3ZPQAAAADTNO2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/M2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEyErz0AAAAAKjP5vwAAAABiD2g9AAAAAMs+3D8AAAAAS95zPQAAAABZJvY/AAAAAPJUsb0AAAAA5ePcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG6BULcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA08RA+AAAAAOco2r8AAAAAgtIAvgAAAACuC+8/AAAAAIagC74AAAAA/ej6PwAAAAC14AY+AAAAAIGo4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO1II2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAl4utvAAAAADcN+W/AAAAAHFk9z0AAAAAmwrsPwAAAACXngg+AAAAAK6X/T8AAAAAiQvOPQAAAADfXADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKDLBSWJJoWMAWyUTegDjAF0lEdAqDJdTvRZ2nV9lChoBkdAoEKs8A7xNWgHTegDaAhHQKg47CFbmlt1fZQoaAZHQJulH7Kq4pdoB03oA2gIR0CoOjklVtGedX2UKGgGR0CY06tG/etTaAdN6ANoCEdAqD56n752yXV9lChoBkdAm1ZrBKtga2gHTegDaAhHQKg+zFGXokl1fZQoaAZHQJrQLxQSBbxoB03oA2gIR0CoRSoQOFxodX2UKGgGR0Cd7bcgQpWnaAdN6ANoCEdAqEZsQyylenV9lChoBkdAn1X4f0VafWgHTegDaAhHQKhKrGo73f11fZQoaAZHQJgYSdFvybxoB03oA2gIR0CoSvoFNcnmdX2UKGgGR0ChMJN5+pfhaAdN6ANoCEdAqFFFvwVj7XV9lChoBkdAn1rTyOJcgWgHTegDaAhHQKhSpB2OhkB1fZQoaAZHQJ3583o9s8BoB03oA2gIR0CoVu668QI2dX2UKGgGR0CdMHLZBcAzaAdN6ANoCEdAqFc8QEpy63V9lChoBkdAmxy0o0ALiWgHTegDaAhHQKhdnoEjgQ91fZQoaAZHQJlxXcO9WZJoB03oA2gIR0CoXu49X9zfdX2UKGgGR0Ce1sNKAavSaAdN6ANoCEdAqGM8FY+0PnV9lChoBkdAm/PM8TzunmgHTegDaAhHQKhjiuSwGGF1fZQoaAZHQJ7xXBciW3VoB03oA2gIR0CoaiG3F1jidX2UKGgGR0CbXpCe2/i6aAdN6ANoCEdAqGtq1NQCS3V9lChoBkdAnjwHxBmf5GgHTegDaAhHQKhv2pyZKFt1fZQoaAZHQJslWqYJE6VoB03oA2gIR0CocDMJIDoydX2UKGgGR0CdtAcVxjriaAdN6ANoCEdAqHad/OMVDnV9lChoBkdAmsiCiyprDmgHTegDaAhHQKh38Z2pyZN1fZQoaAZHQJJWNTGYKIBoB03oA2gIR0CofHxmK64EdX2UKGgGR0CSEvGOuJUHaAdN6ANoCEdAqHzPek56t3V9lChoBkdAmWn04vN/v2gHTegDaAhHQKiDSAf+0gN1fZQoaAZHQJTOQ/6frbBoB03oA2gIR0CohKLylN1ydX2UKGgGR0CcgSa7VawEaAdN6ANoCEdAqItKt1ZDA3V9lChoBkdAoCEk/lhgE2gHTegDaAhHQKiL2de6Zpl1fZQoaAZHQJKPdn3+MqBoB03oA2gIR0Cok9ca4tpVdX2UKGgGR0CdgVOMVDa5aAdN6ANoCEdAqJU3wiJO33V9lChoBkdAmUHX27FsHmgHTegDaAhHQKiZopOvdM11fZQoaAZHQKC1YcMEzO5oB03oA2gIR0ComfKDTSb6dX2UKGgGR0CfKZF4s3AEaAdN6ANoCEdAqKAq2MKkVXV9lChoBkdAn/IHcHnln2gHTegDaAhHQKihddE9dNZ1fZQoaAZHQJlrdTS9du5oB03oA2gIR0Copar5IpYtdX2UKGgGR0CcqLklNUOvaAdN6ANoCEdAqKX/b9If83V9lChoBkdAnkEYLb5/LGgHTegDaAhHQKiskQOFxn51fZQoaAZHQJ3xfkIX0oVoB03oA2gIR0CoreQS8J2MdX2UKGgGR0CfCs2hIvrXaAdN6ANoCEdAqLIxZ4fOlnV9lChoBkdAmoZbVawD/2gHTegDaAhHQKiygQQtjCp1fZQoaAZHQKAn6F49ovloB03oA2gIR0CouN6QNkOJdX2UKGgGR0CZpXQ8fV7QaAdN6ANoCEdAqLouTLW7OHV9lChoBkdAmuyhyfcvd2gHTegDaAhHQKi+cSB9Tgl1fZQoaAZHQKFj2zUI9kloB03oA2gIR0CovsBIFvAHdX2UKGgGR0CgjrhE0BOpaAdN6ANoCEdAqMVUQkHD8HV9lChoBkdAmF5KZ2IO6WgHTegDaAhHQKjGpKfWcz91fZQoaAZHQKAcQPeYUnJoB03oA2gIR0CoyvNnPE88dX2UKGgGR0CeyVMHbAUMaAdN6ANoCEdAqMtM4m1IAnV9lChoBkdAnubW3OObRWgHTegDaAhHQKjRt7FbVz91fZQoaAZHQJ7+YNkOI69oB03oA2gIR0Co0wiI+GGmdX2UKGgGR0CfUEBbwBo3aAdN6ANoCEdAqNdPyup0fnV9lChoBkdAoD3SAe7tiWgHTegDaAhHQKjXo3BHkLh1fZQoaAZHQKA4GeCCjDdoB03oA2gIR0Co3lsuez2OdX2UKGgGR0Cg842hIvrXaAdN6ANoCEdAqN+yVGCqZXV9lChoBkdAoIEAxcmjTWgHTegDaAhHQKjj7s3yZrp1fZQoaAZHQJ9RcGxD9floB03oA2gIR0Co5DyEUTL4dX2UKGgGR0CcdZn8sMAnaAdN6ANoCEdAqOr4mmce83V9lChoBkdAjaXjCYTkAGgHTegDaAhHQKjsXVtoBaN1fZQoaAZHQKBIUiV0Lc9oB03oA2gIR0Co8Jxjz7MxdX2UKGgGR0Cc58OaOPvKaAdN6ANoCEdAqPDz5mAbynV9lChoBkdAoRzKzZ6D5GgHTegDaAhHQKj3kc6Nly11fZQoaAZHQKAtIBe5WiloB03oA2gIR0Co+N48lolEdX2UKGgGR0CbYa925hBraAdN6ANoCEdAqP0tthuwYHV9lChoBkdAnzO4MWoFV2gHTegDaAhHQKj9eq//Nqx1fZQoaAZHQJ5ljdGiHqNoB03oA2gIR0CpA+3rdFfBdX2UKGgGR0CgCX/336AOaAdN6ANoCEdAqQU3Pqs2enV9lChoBkdAn6UxuGbkO2gHTegDaAhHQKkJrKGtZFJ1fZQoaAZHQKAnz9ZzPrxoB03oA2gIR0CpCgquKXOXdX2UKGgGR0CgOd7NbC79aAdN6ANoCEdAqRBzHAAQx3V9lChoBkdAoRO8IRh+fGgHTegDaAhHQKkRumfoRqZ1fZQoaAZHQKGxvEnb7CVoB03oA2gIR0CpFf4iosI3dX2UKGgGR0Cehwlj3EhraAdN6ANoCEdAqRZK3I+4b3V9lChoBkdAoba7cIqsl2gHTegDaAhHQKkcpqrR0EJ1fZQoaAZHQKCltSjQAuJoB03oA2gIR0CpHgzGPxQSdX2UKGgGR0Cf6dgKF7D3aAdN6ANoCEdAqSKvCGetjnV9lChoBkdAnOxAgTyrgmgHTegDaAhHQKkjAEoOQQt1fZQoaAZHQJtAMLy+YdBoB03oA2gIR0CpKZzKT0QLdX2UKGgGR0CeQ+FpPAO8aAdN6ANoCEdAqSr/VZs9CHV9lChoBkdAoH5SA6Mir2gHTegDaAhHQKkvYYVqN6x1fZQoaAZHQJj8wzWPLgZoB03oA2gIR0CpL7LU1AJLdX2UKGgGR0Cg/vE7nxJ/aAdN6ANoCEdAqTY3EZR8+nV9lChoBkdAoWK0DuBtlGgHTegDaAhHQKk3qE+xGDt1fZQoaAZHQKDW0IRh+fBoB03oA2gIR0CpO/XdTHbRdX2UKGgGR0CgxHiQcPvsaAdN6ANoCEdAqTxQht+CsnV9lChoBkdAkQ3xBu4wy2gHTegDaAhHQKlC7EbYK6Z1fZQoaAZHQKAx11jiGWVoB03oA2gIR0CpRDpM6BAfdX2UKGgGR0CeETykKu0UaAdN6ANoCEdAqUielqJuVHV9lChoBkdAnllHNorWiGgHTegDaAhHQKlI7o8IRiB1fZQoaAZHQJ33ax6fJ3hoB03oA2gIR0CpT4b83uNQdX2UKGgGR0CcFVFw1ivxaAdN6ANoCEdAqVDncN6PbXV9lChoBkdAnEv2ilBQemgHTegDaAhHQKlVPpudf9h1fZQoaAZHQJto9Li++M9oB03oA2gIR0CpVY5zHS4OdX2UKGgGR0CgFUoSlFc6aAdN6ANoCEdAqVwa/fwZwXV9lChoBkdAoBVxL26ClWgHTegDaAhHQKlddYbsF+x1fZQoaAZHQJ+nXp2U0N1oB03oA2gIR0CpYfJ8WsRydX2UKGgGR0Cfg5EKVpsXaAdN6ANoCEdAqWJID5j6N3V9lChoBkdAmgRf6oESumgHTegDaAhHQKlpExfOUt91fZQoaAZHQJfvSlO45LhoB03oA2gIR0CpamOiFj/ddX2UKGgGR0CZwNM8HObBaAdN6ANoCEdAqW6m6unuRnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}