--- library_name: transformers base_model: Emm9625/Llama-3.2-1B-chatml tags: - axolotl - generated_from_trainer datasets: - mlabonne/FineTome-100k model-index: - name: Finetome-1b_25-01-19 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # Original base model config # base_model: Dans-DiscountModels/Meta-Llama-3.2-3B-ChatML # Using smaller model instead base_model: Emm9625/Llama-3.2-1B-chatml # Original tokenizer config # tokenizer_config: Dans-DiscountModels/Meta-Llama-3.2-3B-ChatML # Using matching tokenizer for smaller model tokenizer_config: Emm9625/Llama-3.2-1B-chatml # Model loading configuration load_in_8bit: false load_in_4bit: false strict: false # Chat template configuration chat_template: chatml # Dataset configuration datasets: - path: mlabonne/FineTome-100k split: train type: chat_template field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn # shards: 2 # shard_idx: 0 # test_datasets: # - path: Emm9625/textwork-00-dedupe-0.75 # name: smol-constraints # split: test # type: chat_template # field_messages: messages # message_field_role: role # message_field_content: content # train_on_eos: turn # shards: 5 # shard_idx: 0 # - path: Emm9625/textwork-00-dedupe-0.75 # name: smol-rewrite # split: test # type: chat_template # field_messages: messages # message_field_role: role # message_field_content: content # train_on_eos: turn # shards: 5 # shard_idx: 0 # - path: Emm9625/textwork-00-dedupe-0.75 # name: smol-summarize # split: test # type: chat_template # field_messages: messages # message_field_role: role # message_field_content: content # train_on_eos: turn # shards: 5 # shard_idx: 0 dataset_prepared_path: /notebooks/last_run_prepared val_set_size: 0.00 output_dir: /tmp/meow/ hub_model_id: Emm9625/Finetome-1b_25-01-19 hub_strategy: checkpoint # Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets # Required to be true when used in combination with `push_dataset_to_hub` hf_use_auth_token: true # Model configuration sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: 128 lora_alpha: 256 lora_dropout: # 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj # Unsloth optimizations unsloth_cross_entropy_loss: true unsloth_rms_norm: true unsloth_rope: true # Lora Optimizations # unsloth_lora_mlp: true # unsloth_lora_qkv: true # unsloth_lora_o: true # plugins: # - axolotl.integrations.liger.LigerPlugin # liger_rope: true # liger_rms_norm: true # liger_glu_activation: true # liger_layer_norm: true # liger_fused_linear_cross_entropy: true # Training configuration gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 1 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 torch_compile: true train_on_inputs: false group_by_length: false bf16: true gradient_checkpointing: true flash_attention: true # Training monitoring loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_ratio: 0.10 weight_decay: 0.00 saves_per_epoch: 1 evals_per_epoch: 0 save_safetensors: true wandb_project: Finetome-1b_25-01-19 logging_steps: 1 # Special tokens configuration special_tokens: eos_token: "<|im_end|>" bos_token: "<|im_start|>" fsdp: fsdp_config: ```

# Finetome-1b_25-01-19 This model is a fine-tuned version of [Emm9625/Llama-3.2-1B-chatml](https://huggingface.co/Emm9625/Llama-3.2-1B-chatml) on the mlabonne/FineTome-100k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 158 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0