pstan commited on
Commit
d647d63
·
verified ·
1 Parent(s): 2dbfd58

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ base_model: meta-llama/Meta-Llama-3-8B
4
+ language:
5
+ - en
6
+ tags:
7
+ - openchat
8
+ - llama3
9
+ - C-RLFT
10
+ - ONNX
11
+ - DML
12
+ - DirectML
13
+ - ONNXRuntime
14
+ - conversational
15
+ - custom_code
16
+ pipeline_tag: text-generation
17
+ ---
18
+ # openchat-3.6-8b-20240522 ONNX
19
+
20
+ ## Model Summary
21
+
22
+ This repository contains the ONNX-optimized version of [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522), designed to accelerate inference using ONNX Runtime. These optimizations are specifically tailored for CPU and DirectML. DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, offering GPU acceleration across a wide range of supported hardware and drivers, including those from AMD, Intel, NVIDIA, and Qualcomm.
23
+
24
+ ## Optimized Configurations
25
+
26
+ The following optimized configurations are available:
27
+
28
+ - **ONNX model for int4 DirectML:** Optimized for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
29
+ - **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4.
30
+
31
+ ## Usage
32
+
33
+ ### Installation and Setup
34
+
35
+ To use the EmbeddedLLM/openchat-3.6-8b-20240522-onnx model on Windows with DirectML, follow these steps:
36
+
37
+ 1. **Create and activate a Conda environment:**
38
+ ```sh
39
+ conda create -n onnx python=3.10
40
+ conda activate onnx
41
+ ```
42
+
43
+ 2. **Install Git LFS:**
44
+ ```sh
45
+ winget install -e --id GitHub.GitLFS
46
+ ```
47
+
48
+ 3. **Install Hugging Face CLI:**
49
+ ```sh
50
+ pip install huggingface-hub[cli]
51
+ ```
52
+
53
+ 4. **Download the model:**
54
+ ```sh
55
+ huggingface-cli download EmbeddedLLM/openchat-3.6-8b-20240522-onnx --include="onnx/directml/*" --local-dir .\openchat-3.6-8b-20240522-onnx
56
+ ```
57
+
58
+ 5. **Install necessary Python packages:**
59
+ ```sh
60
+ pip install numpy
61
+ pip install onnxruntime-directml
62
+ pip install --pre onnxruntime-genai-directml
63
+ ```
64
+
65
+ 6. **Install Visual Studio 2015 runtime:**
66
+ ```sh
67
+ conda install conda-forge::vs2015_runtime
68
+ ```
69
+
70
+ 7. **Download the example script:**
71
+ ```sh
72
+ Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py"
73
+ ```
74
+
75
+ 8. **Run the example script:**
76
+ ```sh
77
+ python phi3-qa.py -m .\openchat-3.6-8b-20240522-onnx
78
+ ```
79
+
80
+ ### Hardware Requirements
81
+
82
+ **Minimum Configuration:**
83
+ - **Windows:** DirectX 12-capable GPU (AMD/Nvidia)
84
+ - **CPU:** x86_64 / ARM64
85
+
86
+ **Tested Configurations:**
87
+ - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML)
88
+ - **CPU:** AMD Ryzen CPU
89
+
90
+ ## Citation
91
+ ```
92
+ @article{wang2023openchat,
93
+ title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
94
+ author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
95
+ journal={arXiv preprint arXiv:2309.11235},
96
+ year={2023}
97
+ }
98
+ ```