First ppo LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 224.53 +/- 69.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2325f22050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2325f220e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2325f22170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2325f22200>", "_build": "<function ActorCriticPolicy._build at 0x7f2325f22290>", "forward": "<function ActorCriticPolicy.forward at 0x7f2325f22320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2325f223b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2325f22440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2325f224d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2325f22560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2325f225f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2325f22680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2325f28a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683964803678061437, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD/2TwBS9S8Wce7O0GQ8jzcZrQ9jxMePQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4wsl1KXfKMAWyUTTIBjAF0lEdAny6nai9Iw3V9lChoBkdATxg4CIUJwGgHTSEBaAhHQJ8wVlOGj9J1fZQoaAZHQG3pQCr92oxoB00+AWgIR0CfMii35N48dX2UKGgGR0BhPY8OkLx7aAdN6ANoCEdAnzkfKdQO4HV9lChoBkdAcHCJP69CeGgHTYQBaAhHQJ88eo3rD651fZQoaAZHQHFeWUwBYFJoB009AWgIR0CfPlOIInjRdX2UKGgGR0Ax/l5nlGPQaAdL9GgIR0CfP9JOWSlndX2UKGgGR0BA1b1qWTouaAdL5mgIR0CfQSqHXVbzdX2UKGgGR0BhubSqlxffaAdN6ANoCEdAn0i5KjBVMnV9lChoBkdAb24TBZZB9mgHTVEBaAhHQJ9Mu31BdD91fZQoaAZHQG9UwDV6NVBoB01IAWgIR0CfTy7wKBuodX2UKGgGR0A89/8l5WzXaAdNBAFoCEdAn1FmnKnvUnV9lChoBkdAb/LzU7Sy+2gHTU4BaAhHQJ9V75M10kp1fZQoaAZHQG8V1Drqt5loB01EAWgIR0CfWMArhBJJdX2UKGgGR0BwY1Je3QUpaAdNZgFoCEdAn1sJ+x4Y8HV9lChoBkdAcHwpmVZ9u2gHTS0BaAhHQJ9d8BxPwd91fZQoaAZHQE6hCQ9zOopoB0vVaAhHQJ9fMXAM2FZ1fZQoaAZHQHEgAe7tiQVoB00hAWgIR0CfYOvttyggdX2UKGgGR0BDyXRXwLE2aAdNBgFoCEdAn2Jt5IH1OHV9lChoBkdASjLXWe6I32gHS+RoCEdAn2TsdLg4wXV9lChoBkdAcVirH2h7FGgHTT4BaAhHQJ9mycurZJ11fZQoaAZHQG8PVF6Rhc9oB01IAWgIR0CfaMIPbwjMdX2UKGgGR0Bw4I4uK4x2aAdNPAFoCEdAn2qGCZnctXV9lChoBkdAcNVE/jbSJGgHTRgBaAhHQJ9tP6j32251fZQoaAZHQHGO1SbYsd1oB02RAWgIR0Cfb5SVGCqZdX2UKGgGR0BxZJ+pfhMraAdNUgFoCEdAn3GiyprDZXV9lChoBkdATUhOvdM0xmgHS/FoCEdAn3Qu58Sf2HV9lChoBkdASU5P420iQmgHTQIBaAhHQJ91tdOZb6h1fZQoaAZHQEOqRvFWGRFoB0v2aAhHQJ93FugpSaV1fZQoaAZHQHJIqi48U21oB00UAmgIR0Cfeztvn8sMdX2UKGgGR0Bu1INmUW2xaAdNTgFoCEdAn30kp7TlT3V9lChoBkdAcLVzBAOav2gHTTABaAhHQJ9+1fOUt7N1fZQoaAZHQHAQFafSQYFoB02yAWgIR0CfguMTN+spdX2UKGgGR0BxTpV6u4gBaAdNMwFoCEdAn4U6M72crnV9lChoBkdAbfxe1KGtZGgHTSMBaAhHQJ+HVWaMJhR1fZQoaAZHQFC6D2Jzkp9oB0vbaAhHQJ+Kh6w+t8x1fZQoaAZHQEPKgieNDMNoB0vyaAhHQJ+MpVQyhzx1fZQoaAZHQEKON6PbO/toB00CAWgIR0CfjxbCaZx8dX2UKGgGR0BQJnIIWxhVaAdL/WgIR0CfkWO6/ZdwdX2UKGgGR0Bw6IyIpH7QaAdNSQFoCEdAn5VNaMaS93V9lChoBkdAbrCtA9mpVGgHTVoBaAhHQJ+XUVuaWop1fZQoaAZHQHLi6KDTSb9oB01MAWgIR0CfmULEk0JodX2UKGgGR0BvL3bXYlIFaAdNcgFoCEdAn5yTO1OTJXV9lChoBkdAPOF9Sde6Z2gHS+VoCEdAn53n7gsK9nV9lChoBkdAOWQCjk+5fGgHS/RoCEdAn59IgieNDXV9lChoBkdASkbv/io86mgHS+hoCEdAn6CWbG3nZHV9lChoBkdAbwi+u/1xsGgHTVEBaAhHQJ+jssCkoF51fZQoaAZHQHIK0ofCAMFoB02cAWgIR0CfphUNayKOdX2UKGgGR0BxqCQDFId3aAdNQgFoCEdAn6fjt1IRRXV9lChoBkdAcEbgOz6acGgHTSMBaAhHQJ+qre/Ho5h1fZQoaAZHQBX/8ZUDMeRoB00CAWgIR0CfrCl05lvqdX2UKGgGR0Bw931Gsmv4aAdNKwFoCEdAn63k9U0el3V9lChoBkdAbZkC17Y022gHTbkBaAhHQJ+xmIXTEzh1fZQoaAZHQHIPuRLbpNdoB00YAWgIR0Cfs1w/gR9PdX2UKGgGR0BxRwH8jzI4aAdN4AFoCEdAn7YtkjHGTHV9lChoBkdAcDN2dNFjNWgHTSkBaAhHQJ+46nXNC7d1fZQoaAZHQHCB/YvnKW9oB01NAWgIR0CfutAPNFBqdX2UKGgGR0Bwy44ZMtbtaAdNPwFoCEdAn7y2n4wh4nV9lChoBkdAchqaakRBeGgHTTcBaAhHQJ/AijdpItl1fZQoaAZHQG8wPdVNpM9oB00yAWgIR0CfwtrSVnmJdX2UKGgGR0Bw6O+qR2bHaAdNbwFoCEdAn8XUB0ZFX3V9lChoBkdAcJS96Tnq3WgHTU8BaAhHQJ/KUo1DSgJ1fZQoaAZHQHF+xFNL129oB01nAWgIR0CfzWsvZh8ZdX2UKGgGR0Bw4ygkC3gDaAdNHgFoCEdAn8+shs67unV9lChoBkdAbQ0GOdXkpGgHTTEBaAhHQJ/Rarq+rU91fZQoaAZHQHDcNsrNGExoB02FAWgIR0Cf1NayrxRVdX2UKGgGR0ByFBUn5SFXaAdNSgFoCEdAn9a5jhDPW3V9lChoBkdAcHIQemvW6WgHTXsBaAhHQJ/aBK7I1cd1fZQoaAZHQHJPuDOC5EtoB00vAWgIR0Cf28wvQF9sdX2UKGgGR0BwaE/MW43FaAdNRgFoCEdAn92thy8zynV9lChoBkdAPV7CWNWEK2gHS/hoCEdAn98Lq+rU9nV9lChoBkdAcBGl5WzWw2gHTUMBaAhHQJ/h5yR0U491fZQoaAZHQG9+0cwQDmtoB01SAWgIR0Cf48+PikwfdX2UKGgGR0BI58jzI3iraAdNEAFoCEdAn+VhysCDEnV9lChoBkdAb0zFMIu5BmgHTUYBaAhHQJ/oYlF+d9V1fZQoaAZHQG5wGITGo75oB01XAWgIR0Cf6lTBqKxcdX2UKGgGR0A5iDUVi4KAaAdL/2gIR0Cf68bYK6WgdX2UKGgGR0Awpi35N47jaAdNAwFoCEdAn+1Jg1FYuHV9lChoBkdAby0qvvBrOGgHTSsBaAhHQJ/wGT5ftyB1fZQoaAZHQG684tg8bJhoB01kAWgIR0Cf8h95yEL6dX2UKGgGR0BvyK8xsVL0aAdNPgFoCEdAn/P3kDIRy3V9lChoBkdAb5PjlPrOaGgHTVcBaAhHQJ/3BU4rBj51fZQoaAZHQHFP21YyO7xoB01HAWgIR0Cf+XAOavzOdX2UKGgGR0BxxfjZL7GeaAdNFgFoCEdAn/t/wy6+WXV9lChoBkdAb3+ExIre7GgHTVYBaAhHQJ//odFOO811fZQoaAZHQG/xXcHnln1oB01HAWgIR0CgAUvhhpg1dX2UKGgGR0BxxyMuOCGvaAdNfwFoCEdAoAMDq4YrKHV9lChoBkdAcWPksz2vjmgHS/5oCEdAoAT0p9ZzP3V9lChoBkdAcPawiqyWzGgHTVMBaAhHQKAF/Rm9QGh1fZQoaAZHQHFsrbpNbkhoB02fAWgIR0CgBzI/A0sOdX2UKGgGR0BvB/MGHHmzaAdNKgFoCEdAoAilCu2ZzHV9lChoBkdAbtNGGVRk3GgHTTgBaAhHQKAJgFFlTWJ1fZQoaAZHQG7aWkJrtVtoB00hAWgIR0CgClV/c32mdX2UKGgGR0BxKjxd6cAjaAdNpwFoCEdAoAwXe7+T/3V9lChoBkdARC1D+irT6WgHS9loCEdAoAy0RQJokHV9lChoBkdAcR1jiXIEKWgHTdkBaAhHQKAOCCnP3SN1fZQoaAZHQGO2BOP/7zloB03oA2gIR0CgEWcpkPMCdX2UKGgGR0Bsq/4j8k2QaAdNDgFoCEdAoBK0PtlZo3V9lChoBkdAbi6h+vyLAGgHTcgBaAhHQKAUAXOW0JF1fZQoaAZHQHEzPEsJ6Y5oB00MAWgIR0CgFMfHHWBjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1282165ecd54d970c9ba250a2adb5e18785157a3e7a35a72eeaa5f4d1fbbc31e
|
3 |
+
size 146077
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2325f22050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2325f220e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2325f22170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2325f22200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2325f22290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2325f22320>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2325f223b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2325f22440>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2325f224d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2325f22560>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2325f225f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2325f22680>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2325f28a80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683964803678061437,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD/2TwBS9S8Wce7O0GQ8jzcZrQ9jxMePQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4wsl1KXfKMAWyUTTIBjAF0lEdAny6nai9Iw3V9lChoBkdATxg4CIUJwGgHTSEBaAhHQJ8wVlOGj9J1fZQoaAZHQG3pQCr92oxoB00+AWgIR0CfMii35N48dX2UKGgGR0BhPY8OkLx7aAdN6ANoCEdAnzkfKdQO4HV9lChoBkdAcHCJP69CeGgHTYQBaAhHQJ88eo3rD651fZQoaAZHQHFeWUwBYFJoB009AWgIR0CfPlOIInjRdX2UKGgGR0Ax/l5nlGPQaAdL9GgIR0CfP9JOWSlndX2UKGgGR0BA1b1qWTouaAdL5mgIR0CfQSqHXVbzdX2UKGgGR0BhubSqlxffaAdN6ANoCEdAn0i5KjBVMnV9lChoBkdAb24TBZZB9mgHTVEBaAhHQJ9Mu31BdD91fZQoaAZHQG9UwDV6NVBoB01IAWgIR0CfTy7wKBuodX2UKGgGR0A89/8l5WzXaAdNBAFoCEdAn1FmnKnvUnV9lChoBkdAb/LzU7Sy+2gHTU4BaAhHQJ9V75M10kp1fZQoaAZHQG8V1Drqt5loB01EAWgIR0CfWMArhBJJdX2UKGgGR0BwY1Je3QUpaAdNZgFoCEdAn1sJ+x4Y8HV9lChoBkdAcHwpmVZ9u2gHTS0BaAhHQJ9d8BxPwd91fZQoaAZHQE6hCQ9zOopoB0vVaAhHQJ9fMXAM2FZ1fZQoaAZHQHEgAe7tiQVoB00hAWgIR0CfYOvttyggdX2UKGgGR0BDyXRXwLE2aAdNBgFoCEdAn2Jt5IH1OHV9lChoBkdASjLXWe6I32gHS+RoCEdAn2TsdLg4wXV9lChoBkdAcVirH2h7FGgHTT4BaAhHQJ9mycurZJ11fZQoaAZHQG8PVF6Rhc9oB01IAWgIR0CfaMIPbwjMdX2UKGgGR0Bw4I4uK4x2aAdNPAFoCEdAn2qGCZnctXV9lChoBkdAcNVE/jbSJGgHTRgBaAhHQJ9tP6j32251fZQoaAZHQHGO1SbYsd1oB02RAWgIR0Cfb5SVGCqZdX2UKGgGR0BxZJ+pfhMraAdNUgFoCEdAn3GiyprDZXV9lChoBkdATUhOvdM0xmgHS/FoCEdAn3Qu58Sf2HV9lChoBkdASU5P420iQmgHTQIBaAhHQJ91tdOZb6h1fZQoaAZHQEOqRvFWGRFoB0v2aAhHQJ93FugpSaV1fZQoaAZHQHJIqi48U21oB00UAmgIR0Cfeztvn8sMdX2UKGgGR0Bu1INmUW2xaAdNTgFoCEdAn30kp7TlT3V9lChoBkdAcLVzBAOav2gHTTABaAhHQJ9+1fOUt7N1fZQoaAZHQHAQFafSQYFoB02yAWgIR0CfguMTN+spdX2UKGgGR0BxTpV6u4gBaAdNMwFoCEdAn4U6M72crnV9lChoBkdAbfxe1KGtZGgHTSMBaAhHQJ+HVWaMJhR1fZQoaAZHQFC6D2Jzkp9oB0vbaAhHQJ+Kh6w+t8x1fZQoaAZHQEPKgieNDMNoB0vyaAhHQJ+MpVQyhzx1fZQoaAZHQEKON6PbO/toB00CAWgIR0CfjxbCaZx8dX2UKGgGR0BQJnIIWxhVaAdL/WgIR0CfkWO6/ZdwdX2UKGgGR0Bw6IyIpH7QaAdNSQFoCEdAn5VNaMaS93V9lChoBkdAbrCtA9mpVGgHTVoBaAhHQJ+XUVuaWop1fZQoaAZHQHLi6KDTSb9oB01MAWgIR0CfmULEk0JodX2UKGgGR0BvL3bXYlIFaAdNcgFoCEdAn5yTO1OTJXV9lChoBkdAPOF9Sde6Z2gHS+VoCEdAn53n7gsK9nV9lChoBkdAOWQCjk+5fGgHS/RoCEdAn59IgieNDXV9lChoBkdASkbv/io86mgHS+hoCEdAn6CWbG3nZHV9lChoBkdAbwi+u/1xsGgHTVEBaAhHQJ+jssCkoF51fZQoaAZHQHIK0ofCAMFoB02cAWgIR0CfphUNayKOdX2UKGgGR0BxqCQDFId3aAdNQgFoCEdAn6fjt1IRRXV9lChoBkdAcEbgOz6acGgHTSMBaAhHQJ+qre/Ho5h1fZQoaAZHQBX/8ZUDMeRoB00CAWgIR0CfrCl05lvqdX2UKGgGR0Bw931Gsmv4aAdNKwFoCEdAn63k9U0el3V9lChoBkdAbZkC17Y022gHTbkBaAhHQJ+xmIXTEzh1fZQoaAZHQHIPuRLbpNdoB00YAWgIR0Cfs1w/gR9PdX2UKGgGR0BxRwH8jzI4aAdN4AFoCEdAn7YtkjHGTHV9lChoBkdAcDN2dNFjNWgHTSkBaAhHQJ+46nXNC7d1fZQoaAZHQHCB/YvnKW9oB01NAWgIR0CfutAPNFBqdX2UKGgGR0Bwy44ZMtbtaAdNPwFoCEdAn7y2n4wh4nV9lChoBkdAchqaakRBeGgHTTcBaAhHQJ/AijdpItl1fZQoaAZHQG8wPdVNpM9oB00yAWgIR0CfwtrSVnmJdX2UKGgGR0Bw6O+qR2bHaAdNbwFoCEdAn8XUB0ZFX3V9lChoBkdAcJS96Tnq3WgHTU8BaAhHQJ/KUo1DSgJ1fZQoaAZHQHF+xFNL129oB01nAWgIR0CfzWsvZh8ZdX2UKGgGR0Bw4ygkC3gDaAdNHgFoCEdAn8+shs67unV9lChoBkdAbQ0GOdXkpGgHTTEBaAhHQJ/Rarq+rU91fZQoaAZHQHDcNsrNGExoB02FAWgIR0Cf1NayrxRVdX2UKGgGR0ByFBUn5SFXaAdNSgFoCEdAn9a5jhDPW3V9lChoBkdAcHIQemvW6WgHTXsBaAhHQJ/aBK7I1cd1fZQoaAZHQHJPuDOC5EtoB00vAWgIR0Cf28wvQF9sdX2UKGgGR0BwaE/MW43FaAdNRgFoCEdAn92thy8zynV9lChoBkdAPV7CWNWEK2gHS/hoCEdAn98Lq+rU9nV9lChoBkdAcBGl5WzWw2gHTUMBaAhHQJ/h5yR0U491fZQoaAZHQG9+0cwQDmtoB01SAWgIR0Cf48+PikwfdX2UKGgGR0BI58jzI3iraAdNEAFoCEdAn+VhysCDEnV9lChoBkdAb0zFMIu5BmgHTUYBaAhHQJ/oYlF+d9V1fZQoaAZHQG5wGITGo75oB01XAWgIR0Cf6lTBqKxcdX2UKGgGR0A5iDUVi4KAaAdL/2gIR0Cf68bYK6WgdX2UKGgGR0Awpi35N47jaAdNAwFoCEdAn+1Jg1FYuHV9lChoBkdAby0qvvBrOGgHTSsBaAhHQJ/wGT5ftyB1fZQoaAZHQG684tg8bJhoB01kAWgIR0Cf8h95yEL6dX2UKGgGR0BvyK8xsVL0aAdNPgFoCEdAn/P3kDIRy3V9lChoBkdAb5PjlPrOaGgHTVcBaAhHQJ/3BU4rBj51fZQoaAZHQHFP21YyO7xoB01HAWgIR0Cf+XAOavzOdX2UKGgGR0BxxfjZL7GeaAdNFgFoCEdAn/t/wy6+WXV9lChoBkdAb3+ExIre7GgHTVYBaAhHQJ//odFOO811fZQoaAZHQG/xXcHnln1oB01HAWgIR0CgAUvhhpg1dX2UKGgGR0BxxyMuOCGvaAdNfwFoCEdAoAMDq4YrKHV9lChoBkdAcWPksz2vjmgHS/5oCEdAoAT0p9ZzP3V9lChoBkdAcPawiqyWzGgHTVMBaAhHQKAF/Rm9QGh1fZQoaAZHQHFsrbpNbkhoB02fAWgIR0CgBzI/A0sOdX2UKGgGR0BvB/MGHHmzaAdNKgFoCEdAoAilCu2ZzHV9lChoBkdAbtNGGVRk3GgHTTgBaAhHQKAJgFFlTWJ1fZQoaAZHQG7aWkJrtVtoB00hAWgIR0CgClV/c32mdX2UKGgGR0BxKjxd6cAjaAdNpwFoCEdAoAwXe7+T/3V9lChoBkdARC1D+irT6WgHS9loCEdAoAy0RQJokHV9lChoBkdAcR1jiXIEKWgHTdkBaAhHQKAOCCnP3SN1fZQoaAZHQGO2BOP/7zloB03oA2gIR0CgEWcpkPMCdX2UKGgGR0Bsq/4j8k2QaAdNDgFoCEdAoBK0PtlZo3V9lChoBkdAbi6h+vyLAGgHTcgBaAhHQKAUAXOW0JF1fZQoaAZHQHEzPEsJ6Y5oB00MAWgIR0CgFMfHHWBjdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0010524e452a0aea6af7e73f530fba2bef085571618287019ff7645d0986ca47
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44d9b336411001b67987bae38595120252dea4372fe1e9570fad7263f57f903c
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (162 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 224.53408869927324, "std_reward": 69.21265523065644, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-13T08:33:32.596986"}
|