--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: dev-ner-ontonote-bert-finetuned results: [] --- # dev-ner-ontonote-bert-finetuned This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0241 - Precision: 0.9404 - Recall: 0.9668 - F1: 0.9535 - Accuracy: 0.9937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 267 | 0.1113 | 0.7576 | 0.7973 | 0.7769 | 0.9689 | | 0.2811 | 2.0 | 534 | 0.0559 | 0.8732 | 0.9087 | 0.8906 | 0.9847 | | 0.2811 | 3.0 | 801 | 0.0360 | 0.9147 | 0.9478 | 0.9309 | 0.9904 | | 0.063 | 4.0 | 1068 | 0.0275 | 0.9333 | 0.9600 | 0.9465 | 0.9928 | | 0.063 | 5.0 | 1335 | 0.0241 | 0.9404 | 0.9668 | 0.9535 | 0.9937 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.13.3