--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: debonair-croc-755 results: [] --- # debonair-croc-755 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1640 - Hamming Loss: 0.0599 - Zero One Loss: 0.4250 - Jaccard Score: 0.3659 - Hamming Loss Optimised: 0.0559 - Hamming Loss Threshold: 0.6538 - Zero One Loss Optimised: 0.4213 - Zero One Loss Threshold: 0.4694 - Jaccard Score Optimised: 0.3276 - Jaccard Score Threshold: 0.2898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.605041652136542e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8554744545798426,0.9279755950737596) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1721 | 0.0612 | 0.515 | 0.4744 | 0.0606 | 0.4645 | 0.4663 | 0.3499 | 0.3707 | 0.2446 | | No log | 2.0 | 200 | 0.1585 | 0.0607 | 0.4275 | 0.3591 | 0.0574 | 0.6868 | 0.4225 | 0.4869 | 0.3309 | 0.3556 | | No log | 3.0 | 300 | 0.1640 | 0.0599 | 0.4250 | 0.3659 | 0.0559 | 0.6538 | 0.4213 | 0.4694 | 0.3276 | 0.2898 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0