Upload binary_to_midi.ipynb
Browse files- binary_to_midi.ipynb +173 -0
binary_to_midi.ipynb
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 39,
|
6 |
+
"id": "0f3ecd75-341b-4ca9-8aed-3f0a240d7498",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Shape of loaded binary matrix: (50, 350)\n",
|
14 |
+
"[[0 0 0 ... 0 0 0]\n",
|
15 |
+
" [0 0 0 ... 0 0 0]\n",
|
16 |
+
" [0 0 0 ... 0 0 0]\n",
|
17 |
+
" ...\n",
|
18 |
+
" [0 0 0 ... 0 0 0]\n",
|
19 |
+
" [0 0 0 ... 0 0 0]\n",
|
20 |
+
" [0 0 0 ... 0 0 0]]\n",
|
21 |
+
"Total number of notes on: 469\n",
|
22 |
+
"Note density: 0.0268\n"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"data": {
|
27 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHWCAYAAACvwSfUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuT0lEQVR4nOzdeXgb1bk/8O+MVsuy5X3f991xnKSELQmEpGGn0JatBEpbWrZC2h/b7W2g7S2ltKwXKKWQ0EtZSlkKhZaWfSm0ie3E8RrvjuN9l2xrn98ffmaq8YxkSZYsO34/z5MHPBrNHI1l6+tzzryH4TiOAyGEEEIICTg21A0ghBBCCDlRUdAihBBCCAkSClqEEEIIIUFCQYsQQgghJEgoaBFCCCGEBAkFLUIIIYSQIKGgRQghhBASJBS0CCGEEEKChIIWIYQQQkiQUNA6wTEMg7vvvjvUzTihZGVl4eqrrw51M0iQdHd3g2EY7N+/P9RN8ehvf/sb1q1bB61WC4ZhMDk5uaTjXX311cjKygpI21aThb8j9+/fD4Zh0N3dHbI2kRMLBa1Vhv8l4PovISEB27Ztw1//+tdQNy+gtm7dCoZhkJ+fL/v4P/7xD+Ea/OlPf/L5+E1NTbj77rtD+guV/1Dn/7Esi5iYGOzatQuff/55yNq10gXie/f888/joYceClibltPY2Bi+9rWvISwsDI899hj+7//+D+Hh4bL7LvydodVqUVBQgBtvvBFDQ0PL3PKlWfi7LzIyElu2bMFbb70V6qYR4pYy1A0g/vnJT36C7OxscByHoaEh7N+/H2effTbefPNNnHvuucJ+c3NzUCpX77dZq9Wivb0d//73v7Fp0ybRY3/4wx+g1WphNpv9OnZTUxPuuecebN261ae/5FtbW8Gygf0b5bLLLsPZZ58Nh8OBo0eP4vHHH8e2bdtw4MABlJeXB/RcJwJ/v3eunn/+eTQ0NOCWW24Rbc/MzMTc3BxUKtXSGxokBw4cgNFoxE9/+lNs377dq+fwvzPMZjM+/fRTPPHEE3j77bfR0NAAnU6Hp556Ck6nM8gtX7qzzjoLV111FTiOQ09PD5544gmcd955+Otf/4qdO3eGunmESKzeT+A1bteuXdiwYYPw9bXXXovExES88MILoqCl1WqXvW0cx8FsNiMsLGzJx8rNzYXdbscLL7wgClpmsxmvvfYazjnnHLzyyitLPs9iXF+TRqMJ+PHXr1+PK6+8Uvj6tNNOw65du/DEE0/g8ccfD/j5PJmZmXHbO7IW8L0+K9nw8DAAICoqyuvnuP7O+Na3voXY2Fg88MAD+POf/4zLLrtsRQdLVwUFBaKflYsvvhglJSV4+OGHKWiRFYmGDk8QUVFRCAsLk/ReLZx/cPfdd4NhGLS3t+Pqq69GVFQUDAYDrrnmGszOzoqeu2/fPpxxxhlISEiARqNBSUkJnnjiCcm5s7KycO655+Kdd97Bhg0bEBYWhieffBJbtmxBZWWlbHsLCwu9/qV42WWX4aWXXhL9tf3mm29idnYWX/va1yT79/T04Prrr0dhYSHCwsIQGxuLr371q6Jhpv379+OrX/0qAGDbtm3CUMSHH37o8TXxj/FztDiOw7Zt2xAfHy98+AGA1WpFeXk5cnNzMTMz49XrdHXaaacBADo6OkTbJycnccsttyA9PR0ajQZ5eXm47777RNeGH4781a9+hQcffBCZmZkICwvDli1b0NDQIDre1VdfDb1ej46ODpx99tmIiIjAFVdcAQBwOp146KGHUFpaCq1Wi8TERFx33XWYmJgQHePgwYPYuXMn4uLiEBYWhuzsbHzzm98U7ePtsfjr/umnn2LTpk3QarXIycnB73//e2Gfxb53f/7zn3HOOecgJSUFGo0Gubm5+OlPfwqHwyEcY+vWrXjrrbfQ09MjPJ/vGXM3R+v999/HaaedhvDwcERFReGCCy5Ac3OzaB9ffr7cefnll1FdXY2wsDDExcXhyiuvxPHjx0Vt3717NwBg48aNYBjGrzmDZ5xxBgCgq6sLgPwcrV/96lc4+eSTERsbi7CwMFRXV8sO0zMMgxtvvBGvv/46ysrKoNFoUFpair/97W+Sfevq6rBr1y5ERkZCr9fjzDPPxBdffOFz+3nFxcWIi4uT/KwMDw8Lf4BqtVpUVlbi2Wef9fs8hPiLerRWqampKYyOjoLjOAwPD+PRRx+FyWQS/aXnyde+9jVkZ2fj3nvvRW1tLX73u98hISEB9913n7DPE088gdLSUpx//vlQKpV48803cf3118PpdOKGG24QHa+1tRWXXXYZrrvuOnz7299GYWEh9Ho9vv3tb6OhoQFlZWXCvgcOHMDRo0fxox/9yKu2Xn755bj77rvx4YcfCh8Ozz//PM4880wkJCRI9j9w4AD++c9/4tJLL0VaWhq6u7vxxBNPYOvWrWhqaoJOp8Ppp5+Om2++GY888gjuuusuFBcXA4DwX3evaSGGYfDMM8+goqIC3/3ud/Hqq68CAPbu3YvGxkZ8+OGHfvUO8aEwOjpa2DY7O4stW7bg+PHjuO6665CRkYF//vOfuPPOOzEwMCCZb/T73/8eRqMRN9xwA8xmMx5++GGcccYZOHLkCBITE4X97HY7du7ciVNPPRW/+tWvoNPpAADXXXcd9u/fj2uuuQY333wzurq68L//+7+oq6vDZ599BpVKheHhYezYsQPx8fG44447EBUVhe7ubuE68Lw5Fq+9vR2XXHIJrr32WuzevRvPPPMMrr76alRXV6O0tHTR793+/fuh1+uxZ88e6PV6vP/++/jxj3+M6elp3H///QCA//qv/8LU1BT6+vrw4IMPAgD0er3b78e7776LXbt2IScnB3fffTfm5ubw6KOP4pRTTkFtba0koHjz8yWHv0YbN27Evffei6GhITz88MP47LPPUFdXh6ioKPzXf/0XCgsL8dvf/lYYDszNzfV4XDl8MImNjXW7z8MPP4zzzz8fV1xxBaxWK1588UV89atfxV/+8hecc845on0//fRTvPrqq7j++usRERGBRx55BBdffDF6e3uFczQ2NuK0005DZGQkbrvtNqhUKjz55JPYunUrPvroI3zpS1/y+XVMTU1hYmJCdA3m5uawdetWtLe348Ybb0R2djZefvllXH311ZicnMT3v/99n89DiN84sqrs27ePAyD5p9FouP3790v2B8Dt3btX+Hrv3r0cAO6b3/ymaL+LLrqIi42NFW2bnZ2VHG/nzp1cTk6OaFtmZiYHgPvb3/4m2j45OclptVru9ttvF22/+eabufDwcM5kMnl8rVu2bOFKS0s5juO4DRs2cNdeey3HcRw3MTHBqdVq7tlnn+U++OADDgD38ssve2z3559/zgHgfv/73wvbXn75ZQ4A98EHH0j2d/ea+Md2794t2vbkk09yALjnnnuO++KLLziFQsHdcsstHl8fx3FcV1cXB4C75557uJGREW5wcJD75JNPuI0bN0pe109/+lMuPDycO3r0qOgYd9xxB6dQKLje3l7RMcPCwri+vj5hv3/9618cAO7WW28Vtu3evZsDwN1xxx2iY37yySccAO4Pf/iDaPvf/vY30fbXXnuNA8AdOHDA7Wv09lgc95/r/vHHHwvbhoeHOY1Gw/3gBz8Qtnn63sl9/6+77jpOp9NxZrNZ2HbOOedwmZmZkn3567dv3z5h27p167iEhARubGxM2Hb48GGOZVnuqquuErb58vO1kNVq5RISEriysjJubm5O2P6Xv/yFA8D9+Mc/Frbxvwc8XfeF+7777rvcyMgId+zYMe7FF1/kYmNjRe+R3bt3S67HwmtptVq5srIy7owzzhBtB8Cp1Wquvb1d2Hb48GEOAPfoo48K2y688EJOrVZzHR0dwrb+/n4uIiKCO/300xd9LQC4a6+9lhsZGeGGh4e5gwcPcl/+8pc5ANz9998v7PfQQw8JP4+ubd+8eTOn1+u56elp0TFdf0fy16urq2vR9hDiDRo6XKUee+wx/OMf/8A//vEPPPfcc9i2bRu+9a1vSXoS3Pnud78r+vq0007D2NgYpqenhW2uc6z4HrQtW7ags7MTU1NToudnZ2dLhgINBgMuuOACvPDCC+A4DgDgcDjw0ksv4cILL/Spp+fyyy/Hq6++CqvVij/96U9QKBS46KKLZPd1bbfNZsPY2Bjy8vIQFRWF2tpar88p95rc+c53voOdO3fipptuwje+8Q3k5ubi5z//udfn2rt3L+Lj45GUlITTTjsNzc3N+PWvf41LLrlE2Ofll1/GaaedhujoaIyOjgr/tm/fDofDgY8//lh0zAsvvBCpqanC15s2bcKXvvQlvP3225Lzf+973xN9/fLLL8NgMOCss84Snau6uhp6vR4ffPABgP/MEfrLX/4Cm80m+9q8PRavpKREGDoFgPj4eBQWFqKzs9OLKyn+/huNRoyOjuK0007D7OwsWlpavDqGq4GBARw6dAhXX301YmJihO0VFRU466yzZK+nNz9fCx08eBDDw8O4/vrrRXPEzjnnHBQVFS35zrrt27cjPj4e6enpuPTSS6HX6/Haa6+J3iMLuV7LiYkJTE1N4bTTTpP9Odq+fbuoV6miogKRkZHC983hcODvf/87LrzwQuTk5Aj7JScn4/LLL8enn37q8frwnn76acTHxyMhIQEbNmzAe++9h9tuuw179uwR9nn77beRlJSEyy67TNimUqlw8803w2Qy4aOPPlr0PIQECg0drlKbNm0STYa/7LLLUFVVhRtvvBHnnnsu1Gq1x+dnZGSIvuaHqCYmJhAZGQkA+Oyzz7B37158/vnnkvklU1NTMBgMwtfZ2dmy57nqqqvw0ksv4ZNPPsHpp5+Od999F0NDQ/jGN77h/YsFcOmll+KHP/wh/vrXv+IPf/gDzj33XERERMjuOzc3h3vvvRf79u3D8ePHhZDHt9tb7l6TO08//TRyc3PR1taGf/7znz7dDPCd73wHX/3qV2E2m/H+++/jkUceEc0pAoC2tjbU19cjPj5e9hiuc8QAyJbFKCgowB//+EfRNqVSibS0NMm5pqamZIdmXc+1ZcsWXHzxxbjnnnvw4IMPYuvWrbjwwgtx+eWXCzcNeHss3sL3JjD//lw4n8udxsZG/OhHP8L7778v+eD25fvP6+npAQDZoePi4mK88847khsIvPn58uU8RUVF+PTTT31uu6vHHnsMBQUFUCqVSExMRGFh4aJ3z/7lL3/Bz372Mxw6dAgWi0XYzjCMZN/Fvm8jIyOYnZ11ex2dTieOHTuG0tJSj2264IILcOONN8JqteLAgQP4+c9/jtnZWdFr6enpQX5+vuT18cPL/LUmZDlQ0DpBsCyLbdu24eGHH0ZbW9uiv6wUCoXsdj6UdHR04Mwzz0RRUREeeOABpKenQ61W4+2338aDDz4ouQ3cXajYuXMnEhMT8dxzz+H000/Hc889h6SkJK9vSeclJydj69at+PWvf43PPvvM452GN910E/bt24dbbrkFmzdvhsFgAMMwuPTSS326fd3XuyY//PBD4cPoyJEj2Lx5s9fPzc/PF67JueeeC4VCgTvuuAPbtm0TArXT6cRZZ52F2267TfYYBQUFPrWXp9FoJB9ITqcTCQkJ+MMf/iD7HD7s8TXMvvjiC7z55pt455138M1vfhO//vWv8cUXX0Cv13t9LN5i701PJicnsWXLFkRGRuInP/kJcnNzodVqUVtbi9tvv33Zyhcs5TUEy8I/zhbzySef4Pzzz8fpp5+Oxx9/HMnJyVCpVNi3bx+ef/55yf7L9ZrT0tKEn5Wzzz4bcXFxuPHGG7Ft2zZ85StfCei5CAkEClonELvdDgAwmUxLPtabb74Ji8WCN954Q/SX6sJhnsUoFApcfvnl2L9/P+677z68/vrr+Pa3v+32l7Inl19+Ob71rW8hKioKZ599ttv9/vSnP2H37t349a9/LWwzm82Sytlyf5X7a2BgADfddBN27NgBtVqNH/7wh9i5cycyMzP9Ot5//dd/4amnnsKPfvQj4c6t3NxcmEwmr0NqW1ubZNvRo0e9qjuVm5uLd999F6eccopXgfOkk07CSSedhP/5n//B888/jyuuuAIvvvgivvWtb/l8LG+4+959+OGHGBsbw6uvvorTTz9d2M7fWefNMRbiv4etra2Sx1paWhAXFxeQchiu5+Fv+uC1trb6/V7y1yuvvAKtVot33nlHVNJk3759fh0vPj4eOp3O7XVkWRbp6ek+H/e6667Dgw8+iB/96Ee46KKLwDAMMjMzUV9fD6fTKfojgh86Xu5rSdY2mqN1grDZbPj73/8OtVotunPOX3wQWjjs5s8v2W984xuYmJjAdddd59OdkQtdcskl2Lt3Lx5//HGPQ6MKhULyV/Sjjz4qGYrjPxyXunQJAHz729+G0+nE008/jd/+9rdQKpW49tpr/f5rPioqCtdddx3eeecdHDp0CMD8nWyff/453nnnHcn+k5OTQtDmvf7666KyAP/+97/xr3/9C7t27Vr0/F/72tfgcDjw05/+VPKY3W4XrtnExITkNa5btw4AhN49b4/lC3ffO7n3rdVqla1FFh4e7tVQYnJyMtatW4dnn31WdL6Ghgb8/e9/9xj6fbFhwwYkJCTgN7/5jWiY7q9//Suam5sld/kFm0KhAMMwop+b7u5uvP76634fb8eOHfjzn/8sKrUyNDSE559/HqeeeqrbYVVPlEolfvCDH6C5uRl//vOfAcz3dA0ODuKll14S9rPb7Xj00Ueh1+uxZcsWv14DIf6gHq1V6q9//avw19nw8DCef/55tLW14Y477vDrl9VCfM/MeeedJwSkp556CgkJCRgYGPDpWFVVVSgrK8PLL7+M4uJirF+/3q82GQwGr9ZtPPfcc/F///d/MBgMKCkpweeff453331Xchv7unXroFAocN9992FqagoajUaoG+aLffv24a233sL+/fuFuU6PPvoorrzySjzxxBO4/vrrfToe7/vf/z4eeugh/OIXv8CLL76I//f//h/eeOMNnHvuuUK5g5mZGRw5cgR/+tOf0N3djbi4OOH5eXl5OPXUU/G9730PFosFDz30EGJjY90OPbrasmULrrvuOtx77704dOgQduzYAZVKhba2Nrz88st4+OGHcckll+DZZ5/F448/josuugi5ubkwGo146qmnEBkZKQQQb4/lC3ffu5NPPhnR0dHYvXs3br75ZjAMg//7v/+TDbzV1dV46aWXsGfPHmzcuBF6vR7nnXee7Pnuv/9+7Nq1C5s3b8a1114rlHfw9j3pDZVKhfvuuw/XXHMNtmzZgssuu0wo75CVlYVbb701IOfx1jnnnIMHHngAX/7yl3H55ZdjeHgYjz32GPLy8lBfX+/XMX/2s5/hH//4B0499VRcf/31UCqVePLJJ2GxWPDLX/7S77ZeffXV+PGPf4z77rsPF154Ib7zne/gySefxNVXX42amhpkZWXhT3/6Ez777DM89NBDbud3EhIUobnZkfhLrryDVqvl1q1bxz3xxBOc0+kU7Q835R1GRkZkj+t6S/Mbb7zBVVRUcFqtlsvKyuLuu+8+7plnnpHsl5mZyZ1zzjke2/3LX/6SA8D9/Oc/9/q1upZ3cEeuvMPExAR3zTXXcHFxcZxer+d27tzJtbS0yJZleOqpp7icnBxOoVCIygV4ek2uxzl27BhnMBi48847T7LfRRddxIWHh3OdnZ1u28+XEnC9Nd3V1VdfzSkUCuG2eaPRyN15551cXl4ep1arubi4OO7kk0/mfvWrX3FWq1VyzF//+tdceno6p9FouNNOO407fPiw6Pi7d+/mwsPD3bbvt7/9LVddXc2FhYVxERERXHl5OXfbbbdx/f39HMdxXG1tLXfZZZdxGRkZnEaj4RISErhzzz2XO3jwoM/H4q+t3HXfsmULt2XLFtE2d9+7zz77jDvppJO4sLAwLiUlhbvtttu4d955R1IOwmQycZdffjkXFRXFARBKG8iVd+A4jnv33Xe5U045hQsLC+MiIyO58847j2tqahLt48vPlzsvvfQSV1VVxWk0Gi4mJoa74oorRGU6XI/nS3mHxfaVK+/w9NNPc/n5+ZxGo+GKioq4ffv2Ca/RFQDuhhtukBxT7meutraW27lzJ6fX6zmdTsdt27aN++c//7no6/B0Ho7juLvvvlv0PR4aGhJ+D6jVaq68vFzyPeWPSeUdSDAxHBfC2ZlkzXj44Ydx6623oru7W/buJBI43d3dyM7Oxv33348f/vCHoW4OIYSsaTRHiwQdx3F4+umnsWXLFgpZhBBC1hSao0WCZmZmBm+88QY++OADHDlyRJioSgghhKwVFLRI0IyMjODyyy9HVFQU7rrrLpx//vmhbhIhhBCyrGiOFiGEEEJOGB9//DHuv/9+1NTUYGBgAK+99houvPDCkLWH5mgRQggh5IQxMzODyspKPPbYY6FuCgAaOiSEEELICWTXrl1eFWZeLid80HI6nejv70dERERAl1whhBBCVgOO42A0GpGSkrLoQuKBZDabYbVaA3IsjuMkn+EajUa0PNRKdcIHrf7+fr/WzyKEEEJOJMeOHRNWrwg2s9kcsLVNAUCv10vW8d27d2/AVmYIphM+aPFLLRw7diwgS9MQQgghq8n09DTS09OXdemhQPVk8Uwmk+RzfDX0ZgFrIGjxXY2RkZEUtAghhKxZoZo+s9Tz8sURVuvn+AkftAghhBASGgzDBCTgreZKVBS0CCGEEHLCMJlMaG9vF77u6urCoUOHEBMTE5Jl4ChoEUIIISQoQtGjdfDgQWzbtk34es+ePQCA3bt3Y//+/Utui68oaBFCCCEkKAIVtHyxdevWFTXUSJXhCSGEEEKChHq0CCGEEBIUoejRWmkoaBFCCCEkKCho0dAhIYQQQkjQUI8WIYQQQoKCerQoaBFCCCEkSCho0dAhIYQQQkjQUI8WIYQQQoKCerQoaBFCCCEkSCho0dAhIYQQQkjQUI8WIYQQQoKCerQoaBFCCCEkSCho0dAhIYQQQkjQUI8WIYQQQoKCerQoaBFCCCEkSCho0dAhIYQQQkjQUI8WIYQQQoKCerQoaBFCCCEkSCho0dAhIYQQQkjQUI8WIYQQQoKCerQoaBFCCCEkSCho0dAhIYQQQkjQUI8WIYQQQoJmqT1aHMcFqCWhQUGLEEIIIUERiKHD1T70SEOHhBBCCCFBQj1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAma1d4jtVQUtAghhBASFDR0SEOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tGioEUIIYSQIKGgRUOHhBBCCCFBQz1ahBBCCAkK6tFaQT1av/jFL8AwDG655RZhm9lsxg033IDY2Fjo9XpcfPHFGBoaCl0jCSGEEOI1Pmgt9d9qtiKC1oEDB/Dkk0+ioqJCtP3WW2/Fm2++iZdffhkfffQR+vv78ZWvfCVErSSEEEII8U3Ig5bJZMIVV1yBp556CtHR0cL2qakpPP3003jggQdwxhlnoLq6Gvv27cM///lPfPHFFyFsMSGEEEK8QT1aKyBo3XDDDTjnnHOwfft20faamhrYbDbR9qKiImRkZODzzz93ezyLxYLp6WnRP0IIIYQsPwpaIZ4M/+KLL6K2thYHDhyQPDY4OAi1Wo2oqCjR9sTERAwODro95r333ot77rkn0E0lhBBCCPFZyHq0jh07hu9///v4wx/+AK1WG7Dj3nnnnZiamhL+HTt2LGDHJoQQQoj3qEcrhD1aNTU1GB4exvr164VtDocDH3/8Mf73f/8X77zzDqxWKyYnJ0W9WkNDQ0hKSnJ7XI1GA41GE8ymE0IIIcQLVN4hhEHrzDPPxJEjR0TbrrnmGhQVFeH2229Heno6VCoV3nvvPVx88cUAgNbWVvT29mLz5s2haDIhhBBCiE9CFrQiIiJQVlYm2hYeHo7Y2Fhh+7XXXos9e/YgJiYGkZGRuOmmm7B582acdNJJoWgyIYQQQnxAPVorvDL8gw8+CJZlcfHFF8NisWDnzp14/PHHQ90sQgghhHiBghbAcBzHhboRwTQ9PQ2DwYCpqSlERkaGujmEEELIsgrF5yB/zqqqKigUiiUdy+FwoK6ubtV+jq/oHi1CCCGErF7Uo0VBi5CQsNvtkm1KJf04EkJOLBS0KGgRsuw4jsPw8DBcR+0ZhkFSUhJYNuSLNRBCCAkgClqELDOHw4HW1lZJ0IqPj6egRQg54az2HqmloqBFyDLjJ3YuDFqbN2+GSqUKYcsIISSwaOiQghYhy87hcODgwYNwOp3CNoZhYLPZArocFSGEkNCjoEXIMnM4HDhy5IikR8vhcISwVYQQEnjUo0VBi5Bl53Q60dvbK+nRcv2aEEJOBBS0KGgRsuw4joPRaMTCWsEneO1gQghZkyhoERICOp1ONFS42v9iI4QQOdSjRUGLkGXHsizS0tIkQ4dLXaaCEEJWGgpaFLQIWXYKhQIlJSWSyfAUtAgh5MRDQYuQZaZQKLB+/XrJdlqChxByoqEeLQpahCw7pVKJDRs2SHq0KGgRQk40FLQoaBGy7FiWRXFxMQ0dEkLIGkBBi5BlxrIskpOTZbcTQsiJhHq0KGgREhJqtTrUTSCEkKCjoAXQn9CEEEIIIUFCPVqEEEIICQrq0aKgRQghhJAgoaBFQ4eEEEIIIUFDPVqEEEIICQrq0aKgRQghhJAgoaBFQ4eEEEIIIUFDPVqEEEIICQrq0aKgRQghhJAgoaBFQ4eEEEIIIUFDPVqEEEIICQrq0aKgRQghhJAgoaBFQ4eEEEIIIUFDPVqEEEIICZrV3iO1VBS0CCGEEBIUNHRIQUvEZrOB4zjRNoVCAYVCEaIWEeI/juNgs9m82letVge5NYQQsjZR0HIxNjaG2dlZ0bbY2FgYDIYQtYgQ/1ksFvT39y+6H8MwyMrKWvV/NRJCVh7q0aKgJdLT04ORkRHRtpKSEgpaZFWamZlBU1PTovuxLIvMzMxV/8uMELLyUNCioCXS1taGzs5O0bbY2Fjk5OSEqEWE+M9oNKK2tnbR/ViWxY4dO8CydBMyIYQEGgUtF21tbTh8+LBoW2VlZYhaQ8jSeBu0FAoFnE7nMrSIELLWUI8WBS2Rnp4eNDY2iraNjo6GqDWELM3MzIzk/SxHqVRKbgIhhJBAoKBFQUtkeHgYfX19om0mkylErSFkacxms+T9LEetVlPQIoSQIKGg5cJut8NsNku2EbIaOZ1OyfvZ3X4UtAghwUA9WhS0RMLCwqDX60XbqL4QWWnMZrNXfwBYrVbJ+1mOWq2W/UU2MzMjCWBhYWFUV44Q4jUKWhS0RBITE5GVlSXaFhkZGZrGEOLG2NgYJiYmFt1vampK8n6Wo1QqZX+RHT9+HFarVbQtKyvLq/BGCCFkHgUtFzk5OZI5WfHx8SFqDSHyent70dXVteh+o6OjKC8vX3Q/lUolW9qhpaVF8vMQExNDQYsQ4jXq0aKgJZKfnw+NRiPalpiYGKLWECKvu7sbBw8eXHQ/rVaLjRs3Lrofy7Kyv8gaGhokd91WVVUhJSXF+8YSQtY0CloUtETy8vIQGxsr2paQkBCi1hAir7e3F3V1dYvul52djR07diy6H8Mwsj1aTU1NOH78uGjb9PS09w0lhBBCQctVWlqaZKiQlt8hK83AwABaW1sX3S8yMhIFBQWL7ucuaHV0dKCnp0e0jcqdEEJ8QT1aFLREoqOjJXdZ0bIkZKWZnp7G0NDQovuZTKYlDX2Pj49LzrNwcjwhhHhCQYuClgiFKrIacBzn9ZI5SynF4HQ6JeeheluEEOIbClqErDJ6vR5xcXGL7rfUYe/o6GjJeaiuHCHEF9SjRUGLkFUnMTEReXl5i+6Xmpq6pPNkZmZKesR0Ot2SjkkIWVsoaFHQImTVycjIQFVV1aL7eRPGPCkpKZHcHEIFfAkhxDcUtAhZZbKzs71agmep9a7Ky8sl5RyioqKWdExCyNpCPVoUtAhZddLT070awouIiFjSeYqKimCxWAJ6TELI2kJBi4IWIatOQkKCVxPdVSrVks6Tnp4uueuQ5mgRQohvKGgRssrodLplCTxUrJcQslTUo7WGg5bdbpfUBFIqlZJvqMPh8KpmEcMwUCqll9NmswGYr2fE1+nit7Es63OdI6fTCYfD4dW5CeHx7/fF3qeu5HrEXH8eltpjRgg58VHQWsNBa3h4WDKhOCEhAVqtVrTNaDR6tb6bWq1GUlKSaJvT6cTg4CA4joPBYBB6CIaHh+FwOKDT6byqh+RqZmYGExMTom1hYWGSu8MIcTU+Pg6z2QylUik7SX5oaEjyB0VKSooklI2Pj2Nubg4KhWLJ5SMIIWQtWLNBq6OjA3Nzc6Jt4eHhkqA1PDyM7u7uRY8XGRkpCVoOhwPNzc0AgNzcXCFoHT16FDabDYmJiT4HrfHxcck6d7GxsRS0iEe9vb0YHx+HVquVBC2O49Da2irpKY2Pj5cErb6+PoyMjECtVlPQIoQsinq01nDQOnLkCKampkTbCgoKEBsbK9rW19eHmpqaRY+XlJSEk046SbTN4XCgtrYWHMdBp9MhNzcXAHDo0CGYzWYUFhaisrLSp3YPDQ1J2pOdnY3q6mqfjkPWlpaWFhw7dgwRERE4/fTTRY85nU7U1tZKeng3bdqEsLAw0ba2tjZ0dHRAp9Nh69atwW42IeQEsNqD0lKt6aA1PDws2nbOOedI9uvr68PBgwcXPR4folzZ7XbU1NTA6XQKj3Mch8OHD8NoNPo1r2poaEjSHm9qKpG1ra2tDQ0NDbI9nxzHoa6uTlLKYeHXANDe3o6amhqaKE8IIV5as0GrtbUV/f39om0mk0my3+DgIBobGxc9ntxiuw6HAw0NDeA4ThTqWlpaMDk56VdBydHRUUl7qIgkWUxXVxcaGxtl33Mcx6GpqQlms1m03Wq1Svbt6elBY2MjYmJigtZWQsiJg4YO13DQGhgYQG9vr2jbwg8aAJicnJTsJ0fug8fpdOLYsWNwOp2iCfV9fX0YHx/H6Oioz+02Go2S9hQUFPh8HLK2DA8Pu30fcxyHY8eOSeYsyvWUjoyMoLe3V/ZnhRBCFqKgtYaD1tzcnOSDZeFkYGB++GThfnLkPng4jsPMzAwA8e3zs7OzmJubkx2aWYzNZpO0x5/jkLXFbDbLvud5s7OzkvewXFmTxY5DCCFEbM0GrbCwMMlEX7maVhqNRrKfHI1Gg9nZWeH/FQoFGIaBXq+Hw+EQ1RwKDw+H2WyW3OHoDZVKJWmPP8dZKfhrplAooNFoQtyaE5dWq5V9z/N0Op3kr0a+7pvccahCPCHEG9SjtYaDVnJysmSbXGCJiopCZmbmoseLjY0VhmbS0tKg1+vBsizS09PBcRwiIyOFffnHfS3tAMyvNbewPQkJCT4fZ6U4fvw4HA4H9Ho90tLSQt2cE1ZiYiIyMzNl3/cMwyAjI0PSoyV3s0ZCQgIyMzMld+cSQogcClprOGgVFRVJPiz0er1kv+TkZJSVlS16vOjoaDQ0NACYr6ml1+uhUChQVlYGjuOQmJgo7FtcXAyj0YiMjAyf2x0XFydpjzdBcKVqbm6G1WpFSkoKBa0gys7OxuzsrGy4ZxgGxcXFkurwarVasm9mZibKyspEfzgQQghxL6RB64knnsATTzwhFAQtLS3Fj3/8Y+zatQvA/HyQH/zgB3jxxRdhsViwc+dOPP7446LQ4q+KigpJxXe5W9bT0tKwcePGRY9nt9tx4MABAPMhjq+qvXHjRnAcJ/QkMAyDdevWwWw2Iy8vz+d2JyUlSdqTnZ3t83FWirq6OszOzqKkpAQnn3xyqJtzwiosLIROp5MNSCzLYsOGDZLJ73JDuQUFBVAoFDR0SAjxCvVohThopaWl4Re/+AXy8/PBcRyeffZZXHDBBairq0NpaSluvfVWvPXWW3j55ZdhMBhw44034itf+Qo+++yzJZ+7rKxMMqE3IiJCto3e1KkaGhrC73//ewDABRdcAGB+6KWqqgocx4luq6+oqBAqw/sqISEBVVVVom2rdRiHrylmMplW9Tyz1aCgoABxcXGyc7T48L/wZhC5oJWbm4vIyEiaT0cI8QoFLR+Dls1mQ1FREf7yl7+guLh4ySc/77zzRF//z//8D5544gl88cUXSEtLw9NPP43nn38eZ5xxBgBg3759KC4uxhdffCGpwu6r3NxcSYAKDw+X7Ce3/qEchmHQ0tICYL4EAzDfU1BUVCSsdcgrKCgQ1jr0VUxMDIqKikTbVnNIaW9vx+TkJNLT00PdlBNaRkYGEhISZOddMQyDgoICSS04uUWj09LSEBsb6/Ni6IQQslb5FLRUKlXQ6uc4HA68/PLLmJmZwebNm1FTUwObzYbt27cL+xQVFSEjIwOff/6526BlsVhE5Q7cLQgdHx8v+WCR+xCKiIjwKhANDg5icHBQaAMwH7T4XivXD6aEhARwHCd7V9di5NZj9Oc4K8Xw8DDGx8clC2WTwIqJiYHT6XT7l2FSUpJXPw/R0dEwGAyr/i9MQsjyoB4tP4YOb7jhBtx333343e9+59cSMgsdOXIEmzdvhtlshl6vx2uvvYaSkhIcOnQIarVaUvU8MTFRCDRy7r33Xtxzzz2S7RzHiT5I3LV94YcNy7JeBRmFQiFMJnY6ncJxXHsF+G2u5154voVvKG/bw++32BvS2/0WE6jjOBwO2Gw22ZpNZOn475NCoRDCvtwqBt7+LLsehxBCFkNBy4+gdeDAAbz33nv4+9//jvLycslw26uvvurT8QoLC3Ho0CFMTU3hT3/6E3bv3o2PPvrI12YJ7rzzTuzZs0f4enp6Gunp6ZiYmBDNQYmKipIEFqPRKLnzSqfTeTU0p1QqER0dDWC+R2tiYgIsywpB0bXIY3R0NBiGgc1mE4YZeQqFQhhmnJmZkRQjlauF5HqcyMhIjx+ak5OT4DgOWq12SROa+eNoNBrZIVdvRUZGCuUdSGDZ7XahR5d/XzidTkxOTor2YxhGeO8SQggJLJ+DVlRUFC6++OKANUCtVgt331VXV+PAgQN4+OGH8fWvfx1WqxWTk5OiXq2hoSEkJSW5PZ5Go5GdqNvV1SX6MK+srJTcvj4wMICpqSnRtoyMDK+CluvrMBqN6OjoECbDA8DExASOHz8OhmFQVVUFhUKBmZkZdHR0iI4TFhYmBK3h4WHJMj1JSUmS+Uxzc3PCcYqLi92GFo7j0NnZCafTKdRD8ldXVxccDgdiY2ORk5Pj93FycnIwNTUVkDtJiZjr+6KoqAgRERGw2+2S9xzLsli/fv2q/6uRELLyrIYerT179uCnP/0pwsPD8fHHH+Pkk08OyIgdz+cj7du3L2Anl+N0OmGxWFBdXQ2VSoX33ntPCHatra3o7e3F5s2bfT5uY2OjqCeouLhYErQ6OjokC01rtVqvQoBOp0N5eTmA+VBVX18PjUYjBK2hoSHU19cDAMrLy6FQKDA1NSVs40VFRQl1snp7e9He3i56nOM4SdAyGo3CcTIyMjwGrSNHjsDhcKCwsNDvoMVxHBoaGmCz2ZCbm+t30GIYBqWlpTAajau6RMVKZTKZhPdFeno6IiIiYLPZJO85lmWxbt06GhIkhATcaghajz76KG6//XaEh4dj27ZtGBgYCGghcL8im91ux4cffoiOjg5cfvnliIiIQH9/v1Co01t33nkndu3ahYyMDBiNRjz//PP48MMP8c4778BgMODaa6/Fnj17EBMTg8jISNx0003YvHmzX3cc1tbWioLVRRddJNnn6NGjaG5uFm3LzMwUApQnOp0OmzZtAgB0dnaio6MDOp0OV155JYD5CugHDhwAwzC47LLLAMwHMr72Fi8pKUkIlp2dnZLHo6KihPPwpqamhP22bt3qNhg6nU4cPHgQdrsdGo0Gp5566qKvSw7HcaipqYHFYgHDMNi6datfxwGAqqoqmM1mZGVl+X0MIm96elp4X5x++ulISkqC1WqVvKdYlsWVV15JQYsQsiZlZWXhkUcewY4dO8BxHD7//HO30ylOP/10n4/vc9Dq6enBl7/8ZfT29sJiseCss85CREQE7rvvPlgsFvzmN7/x+ljDw8O46qqrMDAwAIPBgIqKCrzzzjs466yzAAAPPvggWJbFxRdfLCpY6o/6+npRV6DVapXs09HRgUOHDom2eXtRdTod1q1bBwCoqalBfX09IiMjwXEcGIbB4OAgDh06BIZhhLISk5OTkvO5Bo6enh7J4yUlJZJzG41GYT9+EWs5HMehvr4eVqt1ST1IfM/Y7Ozskof8ysrKYLfbaY5QEJhMJuF9YTKZAMy/7xe+p1QqFd2MQAgJitXQo3X//ffju9/9Lu69914wDCPbEcO3Y2G9QW/4HLS+//3vY8OGDTh8+LCoUOZFF12Eb3/72z4d6+mnn/b4uFarxWOPPYbHHnvM12ZKdHZ2ir5ZckVIjx8/jra2NtG2hROH3dFoNMIcrenpabS1tSEmJkZ4fHx8HG1tbVAoFMKHmslkkpzPtY3Dw8OSx8fGxiTnnpubE/bzVH6Dn6M1NzeHoaEhr16XO52dnTAajUK49Fd2djY4jpNd7oUszezsrPC+4G/EsNvtkveUWq2WvROREEKWajUErQsvvBAXXnghTCYTIiMj0draGtqhw08++QT//Oc/JR+MWVlZOH78eMAaFmgL6zTJ/QVvMpkwPj4u2uZt3TCFQiEEK6vVKjnO3NwcxsfHwbKscG6bzSbZz3Uyvlx7ZmdnJed2PZ9cTx2P4ziMjY3BbDbLHscXExMTmJ6eFnpK/EU9WcFjt9uF94Vr6ZGF7ymtVktBixCyZvGT4fV6PT744ANkZ2cHdDK8z5UunU6nbNdZX1+f7BI2K4VCoYBSqRT+8TiOg91uF3q4XPdRKpXgOM7rrkI+uTMMIzkPy7LCNofDAbvdLhzX9Xwsy3psj1yydz3fYjW/vN1vMfzr8eU4/Oty/ed6zUhguL6/+O+30+kUrrk37ylCCAkE19/xS/kXTI8++qjQaXDGGWdI/hhdKp8j244dO/DQQw/ht7/9LYD5i2gymbB3716cffbZAW1cICUkJIhCAT/x12azYWRkBMB81fWFc44cDgfGx8cRHx/v9bmioqKQmJgoKkvBH5thGIyOjgqlK4D5KvV826KiooRhPZVKJWmPXJhVq9XCfnLLpvAYhkF8fDysVqvs4sK+SEhIQHh4uOxC3HI4jsPw8LCo54RhGCQlJa3qyvYr0cjICBwOB2ZmZoT3hclkwtDQECYmJiTvKZVKRWGLEBIUq2HocMVNhv/1r3+NnTt3oqSkBGazGZdffjna2toQFxeHF154wecGLJe8vDxRDxP//3Nzc2htbQUwP4xVUFAgep7D4UBvb69PQSs1NRUFBQWiMBMXF4eCggIwDCPckXj8+HFhPUTX/fj26PV6SXvk2hEeHi7sJ7doMI9hGBQWFsJisSxpEjvDMMjPz8fs7CySk5O9eo7D4UBra6skaC0MwGTp2tvbYbVaMTY2JrwvxsbG0Nraiunpacl7Sq1W0/eAELJmrbjJ8GlpaTh8+DBefPFF1NfXw2Qy4dprr8UVV1zh8UM+1CoqKkSFTPk5ZiaTCXV1dQAg6YUC5nu8WltbUV1d7fW5cnJyMDMzg/DwcCGJJyUlCTW1mpubwbIsurq6oFQqsW7dOmE/lUoltCcyMlJ4Di81NVVyPtf9PJXXYBgGlZWVsNlsyMjI8Pr1yKmoqIDFYvG6LIPD4UBdXZ0kaG3evDmgY+FkvmacyWSC1WoV3hcDAwMYGxuDw+GQvKdo+JAQEiyroUdrxU2GB+Z/MfP1oVaL6upq0ZIzfOgymUxCXaFTTjlFcnEbGhoktbUWk5eXh7CwMNENAykpKdi0aRM4jsPbb78Nq9WKvr4+sCyLjRs3Cj0KRqMR7777LgBgw4YNQvFS3sJipcB80OJra3kKWizLorq6Gk6nc0lV4RmGQXV1Nex2u9fHsdvtOHjwoOgmBNdSFyRwDh8+LAx387XSPvnkE4yOjkKn02Hnzp2i/b1dz5MQQny1GoIWL1iT4f06UmtrKx599FEhgBQXF+PGG28UDYGtNAuXpuHnMs3MzKChoQHAfKotLS0VPa+urg69vb0+nSszMxNRUVGib5TrUN1DDz0Ek8mE6elpKJVKlJWVCW+k/v5+oT1bt26VtEdu6DAiIkLYz9P6hQzDoKysTFg6x18Mw6CkpAQOh8PruwYdDgeOHDki6dHypxuWeNbS0oLh4WGUlZUJ74tXXnkFTU1NiIuLk7ynKGgRQsi8vLw8PP744zh69CgAoKCgABdffLHsaJK3fA5ar7zyCi699FJs2LBBWArniy++QHl5OV588cWAroMYSBkZGaI5U3wIslgs6OnpATDfM7RwKMzhcGBwcNCnc8XHxwsLR/MMBgPCwsLgdDpx/PhxTE5Owm63Q61WIzMzU/igs9lsQnvCwsIk7ZGrN6XVaoX9PK3LyDAMMjIywHGcx0nz3vD1OE6nE729vZIeLQpagXf8+HH09/cjPT1deF9MTk6ip6cHdrtd8p6iuz4JIcGymnq0Hn/8cezZs0d0w9j09DRuu+02PPDAA7j++uv9Oq7PQeu2227DnXfeiZ/85Cei7Xv37sVtt922YoOWXq+XHVZzOBzCbZ0qlUqyj9Pp9LnmlFzYUavVQmHImZkZ4ZwajQZ6vV4IWmFhYcJjCoXCqyWNvN0PmJ84Hwi+HofjOExPT8tuJ4HFv78sFovwvrBarTCZTJibm/NpmSxCCFkL3nrrLdx888245ZZb8IMf/EC40WtgYAD3338/vv/97yMrK8uv6go+B62BgQFcddVVku1XXnkl7r//fp8bEGosywrBSG6tN7VaLZpEHwharVY458JQxjCMx/YsxmKxSIqxqtVqybEcDodQ3FSr1Ur+YrBarXA4HKL22O12ofAlf+OD63F4LMtKrhnDMAgLC5MMHVJPSuBpNBrRe8zdNkIIWQ6r4ff8/fffjzvuuAM/+9nPRNuTk5PxwAMPQKfT4Ze//OXyBK2tW7fik08+EZab4X366ac47bTTfG5AqGk0GmGCudyHUFRUVEDvPgDm79zkexUW9i6oVCqhPf70Po2MjAjLrfASEhIk9a5MJhOGh4cBQHbi38jICGZnZ6FUKoV1EScnJzExMQGGYZCbmwuGYTA7OysZWtVoNJK7GlmWRUZGhmTokOYGBV5KSgoUCoVoPl98fDzS09O9LsdBCCGBsFqGDmtra/Hkk0+6ffwb3/gGHnnkEb+O7VXQeuONN4T/P//883H77bejpqYGJ510EoD5OVovv/wy7rnnHr8aEUo6nU6YHCwXbBITE5GTkxPQcxYWFgrDg2FhYaI3kVqtFtrjbTFQV11dXZL1EFUqleRYExMTaGxsBDBfMmJh0Orp6cHw8DC0Wq0QtAYHB9He3g6GYZCVlQWlUompqSnhOLyoqChJ0FIoFCgpKZH0aPnTa0c8KygoQFxcnOiO0OzsbMzMzPhUD44QQtYKh8Phcc6xSqXye06xV0HrwgsvlGx7/PHH8fjjj4u23XDDDfjud7/rV0NCRa/XCzWy5Kqlp6WlBXQeEcMwWLdundDrtHCILSwsTGiP66LU3mptbRUm0/NSU1MlE6BHR0dRU1MDYL6XcuHdim1tbWhvb0dERAS+/OUvA5ifZF1TUwOWZbFr1y4A84tl88fhpaSkYOvWraJtCoUC69evl7SXamgFXkVFBYxGo+h7XlBQAI1Gs+QVAQghxBerpUertLQUf/7zn3HrrbfKPv76669L7tj2llefcnILMJ8ovAlagZpAzuOLhgLS5U+0Wq3QHn9KMDQ3N0vqfvF3h7oaGRkRApLFYpE83tbWhtraWlEB176+PtTU1EChUAjJXi5o8UsLuVIqldiwYYOkR4uCVuBVVFTAbDaL3j98L9dKLipMCDnxrJagdcMNN+B73/seNBoNvvOd7wifTXa7HU8++SR+9KMfSTqXvLXmP+V0Oh2Ki4sBuB869GcIz5PCwkIhqCyco6RWq4X2+HPe3t5eSdCSWyBzYmJC2G/hZHbX47gONQ0PDwtV7fnwPTU1JTmf3LwrlmVRXFxMQ4fLID8/H3a7XRSqMjMzkZiYSMGWEEJk7N69G0eOHMGNN96IO++8E7m5ueA4Dp2dnTCZTLj55ptx9dVX+3Vsv37rHjhwAB988AGGh4clvV0PPPCAXw0JFbVajZSUFADyCzJHRkYG/Hb4pKQkt8ORSqVSaI8/H4qjo6Po7+8XbVs4OR4AZmdnhf3kxp3Hx8fR398v+v5OT0+jv78fCoVCaP/c3JzkfHI3D7AsKzsRmybDB15iYiI4jhNd27i4ODidzlVx9w8h5MSxWnq0AOBXv/oVLrnkErzwwgtoa2sDAGzZsgWXXnqpMCfdHz5/kv/85z/Hj370IxQWFiIxMVF0AVbjL3GGYWSLgPIUCkXAe108TbhbrD2Lsdlskh4quSDldDqF/eRCH38c12PxpRxcA6DrcXhyPWSAfLFVEnhy7y/qySKEhMJqCVrPPPMMzj//fJx00klLClVyfP7t+/DDD+OZZ57xuwttNXAtrqnVaiUT1m02m1DENCIiImi9MrOzs8JcLm9pNBrJkKNcwFGr1cJ+MzMzmJqakj2O67w1rVYLg8EgBM+ZmRnYbDbJ+cLDwyXHYxgm5BOxjUYjNBrNmg58/Hs7MjJyVf5hRAghwfDcc8/h+uuvx/r163HBBRfgggsuCNiygj4HLZZlccoppwTk5CuVw+FAZ2cngPk79hYOhRmNRuHOvpKSkoAXNOWNjIzIzq/yJDY2VijHwJMLOBEREcJ+AwMDkkBnMBiQnZ2NuLg4YVtMTIxQc4tlWQwODmJ2dlZyvri4OOH68ZRKJcrLy316LYHW09ODpKQk0Wtaa+x2Ozo7O1FWVrbkZZgIIWQxq6VH6/3338fExATeeustvPHGG/if//kfJCYm4vzzz8cFF1yAU0891e9OFZ+D1q233orHHnsMDz30kF8nXA1sNhvq6+sBzA/DLAxak5OTwuO5ublBC1rHjh1DR0eHT89JTk6WlGqQu3sxNjYWlZWVAIDOzk7JPKv4+HhUVlaKequSk5NRWVkpLELc1dUFo9EoHIen1+uF68PTaDQhD1otLS1QqVRrOmhZrVbU19ejoKCAghYhJOhWS9ACgOjoaFx55ZW48sorYbVa8f777+ONN97AFVdcgbm5OZx99tk4//zzsWvXLp+qEfgctH74wx/inHPOQW5uLkpKSiS/rF999VVfD7ni2Gw2oWQBX6Xd1djYmPD4rl27gjYk1tXVJSmdsJj09HRJ1X65IpVxcXFCGYnW1lbY7XbR46mpqcjOzha9mVJTU1FdXS3cLdje3o7JyUnhODyLxSJpt06nw9e//vWQDlcdOXIESUlJKCwsDFkbQs1qtaKmpgbnn39+wMuWEELIiUKtVuPLX/4yvvzlL+Pxxx/HwYMH8cYbb+CnP/0pmpub8d///d9eH8vnoHXzzTfjgw8+wLZt2xAbG3tCzvOw2Wyora0FAJx88smSx8fGxoTHzWZz0NrR3d0tnMdbmzZtkhQnlevBiY+PR1VVFQDgH//4h2SIsqqqCvn5+aLeurS0NAAQerQ6OjqElO9qYGAAr7/+umhbRESET68jGI4cOYJ169aFuhkhZbVaUVtb6/aGBUIICaTV1KPlyYYNG7Bhwwb85Cc/8XnutM9B69lnn8Urr7yCc845x9enrhoOh0O4tXNiYkLyuNFoFB4P5gfWwMCAcB5vxcfHo6CgQLRNLuRERkYK+x07dkwydBgdHY2CggJJiQB+WJJlWfT390OtVkvO53r9eK6FT0Olq6tLMkl/rbHb7Whra/P5FwUhhPhjtQUth8OB/fv347333pOUsGIYBu+9957P0y58DloxMTHIzc319WmritPpxMjICAD5GlQWi0V43N+1j7xhMpmE83grPDxc0oMlN4EvLCxM6K2ampqSnCcsLExynPDwcCFoMQwj3L22cL+IiAjJ8RYOTYbC5OSk7PdzLeHf2yfyag+EEOKv73//+9i/fz/OOecclJWVBSTk+Ry07r77buzduxf79u2TTLo+kTAME9A1Dv1tg6/4YT1v93V3Htfj8B/KDMOIjs3/pbLwfCu5COlK6IImhJC1YrX1aL344ov44x//KJkSsxQ+B61HHnkEHR0dSExMRFZWlqQLzdc5RSsRy7LCnYZyYVKr1SIxMRFAcAtBRkRECOfxlj93ksXFxQl1wXh8rSmn04nh4WGhPa4TqA0Gg2zVfKVSKWn3Shg6jImJgVarDXUzQoplWSQmJq7oMEwIOXGstqClVqslN5Qtlc8p4cILLwxoA1YihUIhzDuKjo6WPB4RESE8Hsxb5JOSkiTznxbjT5DIzs6WPI8PmA6HA0ePHgUA5OTkiIJWSkqK7J1rGo3Gq3liyy0nJ2dFBL5QUqlUVNqBEELc+MEPfoCHH34Y//u//xuwgOdz0Nq7d29ATrySqVQq4e40uXX7YmJihMeD2UOSlZXl811y/qzLWFJSIumB4ktW2Gw2HDp0SDg2f+chMB9cXBcu5ul0Okm7V8Iwc2lp6ZquoQX85729lqvjE0KWz2rr0fr000/xwQcf4K9//StKS0sDUsKKFkCToVKpsGHDBgCQHbqLjY0VHg920PJ1npg/Qau8vBwmk0m0zTVo1dTUgOM4SXdqfn6+bM9IWFiYcH14arU65POjKioqZIPzWqJWq7FhwwYKWoSQZbHaglZUVBQuuuiigB7TryV4PL3oYN6Ft1xUKpVQ7Vyu2Gd0dLTweLCqwgNAZmamz8VQ/SlCWVxcLClTwQ/12e12HD58GBzH4cwzzxTtk52d7faOxoXV4lfCnKDi4mLZKvlriVqtRmVlJQUtQgiRsW/fvoAf0+eg9dprr4m+ttlsqKurw7PPPot77rknYA0LJYVCIRT9lOux0uv1wuPBnOsSFxcnWbB5Mf4Ev7S0NMnt/vyQoMPhQFdXFwBIalAlJCTIhm6NRiMpmhrq3ixgvmp+MIPxaqBUKpGVlRXUmzgIIYS32nq0AKC+vl6Ym1xYWLjk5eN8/m17wQUXSLZdcsklKC0txUsvvYRrr712SQ1aCRiG8diTpFKplmUycVhYmOwcqEDzNNzodDoxPT0NQFqc1d28K5Zlg7Ys0VL4M6x6olnsvU0IIYG0moLWv//9b1x77bVoamoSpu0wDIPS0lI8/fTT2Lhxo1/HDdiftSeddBK+853vBOpwAWe1Wn2q4s4PrTgcDslwKMuyHnsE7Ha7x4KQcsM2NptNMh9LqVT6POQmd5zFzu3uOK5vbpVKBY7jhGvoWv7BUzFS19fAP1ehUEChUHjVDkIIISTYmpqacOaZZ6K4uBjPPfcciouLhe0PPvggzjzzTHzxxRcoKSnx+dgBCVpzc3N45JFHkJqaGojDBcXx48eFnpnFKJVKZGRkAJgfLpucnBQ9HhERITt3izc2NoaZmRnZxxiGQWZmpiRADQ8Pw2KxiLYlJCT43AszMjLidv1FhmGQlZXl1V8HY2NjojCUlJQEp9OJvr4+0XFmZ2eFOltykpKSoNPp4HQ6cfz4cXAch+joaNmyGYQQQk4sq6VH6+6778ZZZ52FV155RXS+devW4bLLLsNXvvIV3H333fjjH//o87F9DlrR0dGiRnAcB6PRCJ1Oh+eee87nBiyX1tZWr0sMaLVaIWgNDQ2ho6ND9HhaWprHoHXs2DEMDg66fTwtLU0StDo7OyVzoDQajc9Bq7u7W7JANE+hUCAzM9OrN21PT4+oMGtubi5sNhuamprAsiwyMjKgUCgwNTWFpqYmt8fR6XTQ6XRwOBxobGwEABQUFFDQIoSQNWC1BC2+pIPcuRiGwV133eV3tXifg9ZDDz0k+pplWcTHx+NLX/rSiv7wPHTokNelGCIiIrB9+3YAQF9fn6Tavd1u91jfqrOzEy0tLbKPMQyD7du3S+Z4NTc3S8JZZmamz72Era2tOHbsmOxjSqUSO3bs8Oo4bW1tiIyMFIJWaWkpHA4HamtrwbIstm/fDoVCgYmJCY+rAeTl5SEpKQkOhwN1dXXgOE5U8JUQQggJNaPR6HEllqSkJBiNRr+O7XPQ2r17t18nCrXDhw97PYHdNTDKBa3FJhN3dHS4DR8Mw8jOaWppaUFnZ6do25YtW7xqr6ujR4+iublZ9jGVSgWn0+nV/Kj29nbExsZi06ZNAICysjL09fWhoaEBLMsKc9DGx8c9Bi0+2NntdtTW1oLjOOTn5/v6sgghhKxSK+Gu88VkZmbi3//+N9LT02Uf/9e//oXMzEy/ju110Ort7fVqP37IbaVpaWnxemK5a/XwoaEhYciLt1hQOHbsmOQ5PJZlZWuNdXR0SIbgFs4N80ZXV5fbc/MT2r3R09MjmuuVl5eHnp4eNDY2QqFQCK9hamrK7fkACPPinE4nmpqaRGsnEkIIObGtlqHDSy+9FHv27EFhYSHKyspEjx05cgQ//OEPcdVVV/l1bK+DlrtJ1BzHCdvd9dasBMePH/f6m+X6GiYnJ9HX1yd6fGxszOPzR0dHJc9xJXdH4tDQkOQ5Cxd69sbw8LDbc2s0Gq+D1ujoqKgHkB/+6+vrg0KhEI4zMzPj8bXOzc0BmH/NfFj39qYEQgghZDnceeedePfdd7Fu3TqcddZZKC4uBsdxaG5uxrvvvotNmzbhrrvu8uvYXgeturo62e0cx+HFF1/EI488sqLrFC28o88T154cm80muYtvsTAp9xwewzCyYcdisUie40+VfavV6vbcHMd5HbSsVitsNpvwNV/o02w2i0pbOJ1Ot+fjH+fPbbFYwHHcig3jhBBCAmu19GhptVp88MEHePDBB/HCCy/go48+AjB/89bPfvYz3HrrrX4XvPY6aC1cUgUA3n33Xdxxxx04evQobrvtNvzgBz/wqxHLITw83OtvlmtglLvzb7EiomFhYW5Dp7sljMLDwyXP8acoqk6nc3tutVoNk8kEu90OlUrl8U0TFhYGrVYLhmEQEREBlmWFa+EatJRKpceAze/LH8fpdC5LsVdCCCGht1qCFjD/GXn77bfj9ttvD+hx/aqjVVtbi9tvvx2ffPIJvvWtb+Htt99e8Yv18uUIvOFauiEmJkaynMxi6+XFx8dLnsNjGEZ2rlhKSoqkvIM/6xYmJSW5PbdSqcSxY8egUqkQExODlJQUt8dJTExEXFycUBJCpVIhOjoaWVlZUCgUwmvQ6XRuz8c/DswHzMzMTHAch6ioKJ9fFyGEELIa+RS0Ojo6cNddd+GVV17B1772NTQ1NSEnJydYbQuo0tJSr3tSYmJihP9PSUmRrHO02IT/rKwst2sjKRQK2aryeXl5ku3+BJK8vDy3Q3NKpRINDQ1QKBTIy8vzGLRycnIQHR0tLLCtVquRnJyM8vJyUbX3mJgYj+tA8Ws1KhQKVFZWwuFwIDk52efXRQghZPVZTT1aweJ10Lr++uvx9NNPY9u2bTh48KDHOlIr0fr1672uo+Xak5SWliZZ38hTDw4wX9zTE7metZKSEkkR1MV6zuQUFhYiIiJC9jGO44S5dmq1WijdICc/Px96vR4qlQrV1dXQarXCtWAYRngNMTExHtd/4sOiUqnE+vXrAcBjwCOEEHLioKDlQ9D6zW9+A61Wi+HhYXzzm990u5+nmkqhVFFR4fVQnOt6gKmpqZK7BD0VNQPme4M81dqS69EqKipCWlqaaJtrz5q3CgoK3LbPbrfjr3/9K+x2u+RcC+Xm5kKj0UCpVKKqqgoajQYpKSmoqqoSDX9GR0ejqqrK7XH4oKVQKIT9qEeLEELIWuF10Nq7d28w2xF0eXl5bnt6FnLtcYqPj5dMfl9sKZ/U1FS3Icm1N8hVZmam6C4/YPHCqHLS09PdBi2r1Yr29nZYLBaPvVn8cfjFswsKCqBWq4Vr4Rq0IiMjPVZ55yfKKxQKFBYWCpXhCSGEnPhWa4+W1WpFV1cXcnNzZTtHfLFmglZCQoJfwSUiIkLSE7bYN91gMHg8l9zzY2NjJaUXvC2w6iomJsZtCQeLxYKRkRHMzc0tupQA3xPFsiwSExOhUChE14J/Da7rIcrhXwPDMMINE/68LkIIIavPagtas7OzuOmmm/Dss88CmF9tJScnBzfddBNSU1Nxxx13+HzMNfOJp1AofPrH15zie6Bc/y0WFFiW9Xhsb5/jz5trsXM7HA44nU5RGONfq+s2lmXBsiw4jhPa7HotXPdf7LXy+7q+Ll9qeslxbXMg/hFCCCF33nknDh8+jA8//FA0r3v79u146aWX/Drm0vrDTlBOpxPj4+MA5ifGL1Y3a7VgGAZxcXEwm82i4c+JiQmhvhV/lyAw3wM2MzMjOww6Pj4OjuOg0Wg8DgUajUZYrVYwDCNM7p+dnRWq3sfGxvoVKKempgJW+FSr1a7oYruEELJarbYerddffx0vvfQSTjrpJNF5S0tL0dHR4dcxKWjJcDgcaG9vBzA/d+pEClq5ubmwWCyi4b6enh5YLBbo9XpR0JqenkZvb69s0Oro6IDT6URcXJzHoDU4OIjx8XEoFAohaI2PjwvL9kRFRfk1/t3X1weTyeTz8+QkJCRQ0CKEkCBYbUFrZGREti7ozMyM3+2goCXDZrMJd0+GhYWdMHfJMQyDyspK2Gw20QrljY2NmJ6eRnJysmgxzbGxMRw5cgTV1dWi43Ach/r6elitVhQUFCAvL8/tOTs7O9HZ2QmtViuUgRgcHERtbS0YhkFVVZVfQau1tRVDQ0M+P09OSUnJqqkHRwghJHg2bNiAt956CzfddBOA/4S83/3ud9i8ebNfx6SgJcNms+HgwYMA5sscyC0/tBqxLIv169fD4XAgMzNT2H7kyBGMjIxI7h4cHR1FfX295Dgcx6G2thZms3nRIrDt7e2ora2FXq8X5rwNDAzg4MGDYBgGV111lV/rRzU3N6Ozs9Pn58nxpwI/IYSQxa22Hq2f//zn2LVrF5qammC32/Hwww+jqakJ//znP4X1D33lddB65JFHvNrv5ptv9qshK4nNZsPhw4cBAGeccUaIWxM4DMOgvLwcHMeJiqO2tLSgr69P8maemJhAU1OT5Dgcx6GxsREmkwmpqakez9nb24vDhw+LhiSHhoZw+PBhsCzr9zyrjo4O2RDoD+rNIoSQ4FhtQevUU0/FoUOH8Itf/ALl5eX4+9//jvXr1+Pzzz/3uAqKJ14HrQcffHDRfRiGOSGClsPhEHpLJicnQ9uYAGIYBjk5OcIkdl5vby+6u7sl49JGoxE9PT2yx+rq6oLRaMTw8LDHcw4ODqKzs1O0nNDExAQ6OzvBMIykGKy3jh8/HrAerdHR0YAchxBCyOqXm5uLp556KmDH8zpodXV1BeykK53T6RQClsViCW1jAkxu/cTJyUlMTk5KJpdbrVa3QXNychJGoxEzMzMez2cymTA5OSn6i2Rubk7Y5m9pBaPRGLAQzN8BSQghJLBWW4+WQqHAwMCApONhbGwMCQkJcDgcPh9zTc3RcjqdwkXyNLeIYRjhcY7jhIrtcs+x2+2SsKBUKoU3Bv9cb+pvLaeF10KlUklqfLEs6/Y6KZVK2ee4248/Dj9UqFKplvTDo1AovF4k3JtjEUIICbzVFrQ8Ffx2XZ7PFz4FLafTif379+PVV19Fd3c3GIZBdnY2LrnkEnzjG99Y8Qs/zs7OCvWxUlNTPRYP5e80dDqdGBgYAMMwSEtLk7zGkZERydI5/FI1TqcTg4OD4DgOBoNBNE8p1FyvRUxMDCwWi6SMQ1hYmGSha15iYiIiIiJke8hcRUdHIzk5WXjt/DBdcnKyaCkfX8XFxQXsbtCV9H0hhBCy/Ph56AzD4He/+52o5I/D4cDHH3+MoqIiv47tddDiOA7nn38+3n77bVRWVgqTqpubm3H11Vfj1Vdfxeuvv+5XI5bLxMQEWlpaAMzXTnIXtJRKpXBB7XY7WlpawDAMUlJSJM/p6OiQDD1ptVqEhYXB4XCgubkZwPyY70r6QJ+cnBSuRUZGBgwGA7KyskT7GAwG2XUMGYZBYWEh5ubmkJKS4vE8qampKCoqEt60XV1d4DgORUVFbtd99EZmZibm5ub8eu5CJ0r5DkIIWWlWS48WPw+d4zj85je/EX02qdVqZGVl4Te/+Y1fx/Y6aO3fvx8ff/wx3nvvPWzbtk302Pvvv48LL7wQv//973HVVVf51ZDlMDIygpqaGgDASSedJCqv70qlUgm1o2w2G2pqasCyLLZu3SoJBk1NTRgbGxNty8rKEsZya2trwXEcdDodcnNzg/Cq/DM6Oipci4KCAjidTlHJB2C+16iiokL2+VVVVbBYLMjOzvZ4npycHJjNZmExav4uRv76+rtYZ1FRUcDKMmRkZATkOIQQQsRWS9Di56Fv27YNr776KqKjowN2bK8/5V544QXcddddkpAFzJdAuOOOO/CHP/xhxQctvj6W1Wp1u59r0Kqrq0N9fT2USiUcDodkXlBjY6NQ5Zx35plnApjvDaupqYHT6VxRIQsQX4sLLrgA4eHhQuV2XmxsrOztrAzDYN26dbDb7YuGlLy8PISFhQlj242NjYiMjER1dfWSerSKiopkq/f6Y2HAJIQQsjZ98MEHwv/z87WWGvS8Dlr19fX45S9/6fbxXbt2eV1rK1TGx8fR2NgIYPGgxVdIP3DgABobG6FUKmVLEbS1tUnKDBiNRgDz47oNDQ3gOG7RMgjLzfVafP/730diYqJkqaGoqCgUFxdLnsswDEpKSuB0OhEZGenxPOnp6YiOjhbmYnV2dqKyslK4vv72aOXk5Cw6bOmtxeaZEUII8c9q6dFy9fvf/x73338/2traAMyP+vy///f/8I1vfMOv43n9KTc+Pi5aH2+hxMRETExM+NWI5WIymdDb2wsAHm/RZFlWWKLG4XCgt7cXKpVK9m6EgYEB4Zg8fs6W0+nEsWPH4HQ6MT09HaiXERAzMzNCuxMSEpCeni7pXdLr9W7vskhLSwPHcYsGpbi4OERHRws/KIODg6isrBSur7+T4RMTE/2uwbWQv2GPEEKIZ6staD3wwAP47//+b9x444045ZRTAACffvopvvvd72J0dBS33nqrz8f0+hPG4XB4/EBSKBR+V/leLjabTZhA7elDmmEY6HQ6Yb+5uTnYbDbZoDU3NyeZlM2HOI7jhDpTC+9MDDXXa6HRaITX60qhULhdUNvbhbYXLq/Dn1PufL5wN7+OEEII8dejjz6KJ554QjQN6vzzz0dpaSnuvvvu4AYtjuNw9dVXu12XbjUU9lSpVEJA8LYnRaPRCHOM5FJ1WFiYJHTwPUMMw0Cv18vO7Qo1uWvhdDphNpsBzL9uhUIBjuOEcORaD4vncDgk33uWZd0GobCwsBV3LQghhATPSi/95GpgYAAnn3yyZPvJJ5+MgYEBv47pddDavXv3ovus5InwwPxQGD/x2dtJ2FFRUcjMzBQVIXWVnJwshBMe31vDD0FyHLfoXKbl5not+J5Ki8UiDCemp6cjPDwcTqdTNMS4sNbWzMwM+vv7Rds0Go3buxGTk5NpThQhhKwRq23oMC8vD3/84x9x1113iba/9NJLyM/P9+uYXgetffv2+XWClSQ2NlaYhO1thdfk5GSUlZW5rexeUFAgKTPAhyqFQoGysjJwHOdxflsoxMTECNeC72GanZ1FQ0MDgPlCo+Hh4bDZbMK2iooKSdCanJwUHudFRUW5DVp5eXkBu1uQEEIICaR77rkHX//61/Hxxx8Lc7Q+++wzvPfee/jjH//o1zFDOgv43nvvxauvvoqWlhaEhYXh5JNPxn333YfCwkJhH7PZjB/84Ad48cUXYbFYsHPnTjz++ON+BZf4+Hhs3LgRgPdBKy0tDRs3bgTLsrK9YGVlZZK73/geG6VSiY0bN4LjuBVXFNP1WvDDwSaTCQcOHAAAVFZWIjExETabTdiWkJAgKWA6Pj4uPM5LTU3F9u3bZc9bWloasLsFCSGErGyrrUfr4osvxr/+9S88+OCDQhH24uJi/Pvf/0ZVVZVfx/Q6aH3lK1/xar9XX33V65N/9NFHuOGGG7Bx40bY7Xbcdddd2LFjB5qamoReoltvvRVvvfUWXn75ZRgMBtx44434yle+gs8++8zr8/Di4+OFC+VL0LLb7WBZVrZHq6SkRLKwsmvQqqqqAsdxKy5cxMXFCdeCD1pGoxF1dXUAINwlabfbhW0bNmyQHGd8fFx4nMeXt5ATyPpXhBBCVrbVFrSA+YLazz33XMCO53XQCsbyMX/7299EX+/fvx8JCQmoqanB6aefjqmpKTz99NN4/vnnccYZZwCYH8IsLi7GF198gZNOOsmn80VFRQlL63g7ITshIQFardbtunw5OTmSOwr55WZYlkVRUZGw1uFKInctzGazsCwPHx75JYgACGsjupqenhYe53ma/5adne31HYuEEELIarei5mhNTU0BgDAPqKamBjabTTQMVVRUhIyMDHz++eeyQctisYjugnOtX6XT6YTeG28nw0dERECn07lN5XFxcZKyD/zkcpZlhSFOfyugB0tYWBiSkpIA/KdtVqsVg4ODAP5zFym/MDYASc8dMF+ugX+cxx9XTmxsrN+1swghhKwuq6VHi2XZRc/DMIxfZaxWTKVGp9OJW265BaeccoowSXtwcBBqtVpyl1piYqLkw51377334p577pFs5zhONPwnVxNLzmLPcVdbjN/Xn1IGntrm7o3AcZxPb0a51+V0OoXeOY7jwHGcaJtckVeO4yQ9eq41xxa2iYqDEkLI2rFagtZrr73m9rHPP/8cjzzyiN9Fsr3+1PvmN7/p1X7PPPOMXw254YYb0NDQgE8//dSv5/PuvPNO7NmzR/h6enoa6enpmJiYgEqlEkovTE1NeXXRdDqdUBNqcnJSEoKioqIkPTQmkwlWqxUsy/pcysDpdGJyctLt43J1u2w2G0wmk9+LYE5PT8PhcGBubk44htlsxsTEBKanp4VtHMdhenpaVKpCrVZLzqvX64VVAiIiIqhuFiGEkBXtggsukGxrbW3FHXfcgTfffBNXXHEFfvKTn/h1bK+D1v79+5GZmSlM7g6kG2+8EX/5y1/w8ccfIy0tTdielJQEq9WKyclJUWAZGhpyOzyl0Whki6p2dXWBYRihdlRvb69XRVYzMjKEoNXV1SXp1SkvL5cU5xwcHMTExIQwGd4XVqsVHR0dbh9PSkoSlq/hzc3NobOzE+vXr/cr+ff09MBisWB8fBx5eXkA5kNlR0cHpqenhW0OhwPHjx8XBS29Xi88zouPjxdeQ35+PtXNIoSQNWq19Gi56u/vx969e/Hss89i586dOHTokDDS5g+vg9b3vvc9vPDCC+jq6sI111yDK6+8UlJTyVccx+Gmm27Ca6+9hg8//FBSe6m6uhoqlQrvvfceLr74YgDzCbO3txebN2/26VyNjY3QaDRC0GpubobJZFr0eVqtFomJieA4DkeOHJGMzxYUFEiCVnd3N3p6eqDRaHwOWhaLBfX19W4f5zhOErSMRiOOHDmCqqoqv96Q/LWYnp5GeXk5AGBkZAQ2mw1WqxWVlZVwOp2w2+1oa2sTLTQdHR0tPIen1+uF15CQkEBBixBC1qjVFLSmpqbw85//HI8++ijWrVuH9957D6eddtqSj+t10HrsscfwwAMP4NVXX8UzzzyDO++8E+eccw6uvfZa7Nixw68LccMNN+D555/Hn//8Z0RERAjzrgwGA8LCwmAwGHDttddiz549iImJQWRkJG666SZs3rzZ5zsOa2trERsbK5TWP3z4sOxddAtlZmaivLwcHMehtrZW0gt27rnnSu4obG9vx6FDh6DT6XDllVf61M65uTlJXSpXUVFR2LRpk2jb1NQUampq/F5ZnL8WOp1OOHZ7ezva2tqgVCqFsg7Hjx9HU1MTzj//fOG5sbGxkva4vobq6moh3BJCCCEr0S9/+Uvcd999SEpKwgsvvCA7lOgvn2YmazQaXHbZZbjsssvQ09OD/fv34/rrr4fdbkdjY6NQ1sBbTzzxBABg69atou379u3D1VdfDQB48MEHwbIsLr74YlHBUl/V19eLemKamprcTqh3dfrppwOA0KM1Ozsrenzh8jvA/BDjoUOHEBkZ6fMkdbPZjEOHDrl9vKSkRLKN79Hyd0i3paUF/f39yMnJwde//nUA85P/WlpaEBkZKQS4np4eHD16VPTc6OhorFu3TrStr68PL774IgB4nG9GCCHkxLZaerTuuOMOhIWFIS8vD88++yyeffZZ2f18qRXK8/sWMP5WSI7jZO9G84Y3wUCr1eKxxx7DY4895tc5eJ2dnRgZGRG+7unpEdbw84QPChzHobOzU1KMc+Edd8D8HK22tja/hlZtNhva2trcPj42NibZNjc3h46ODr+DFj/UaTAYRHO02trakJCQgNzcXDAMA4fDgb6+PtFz5eZoWa1W4TV4MzxLCCHkxLRagtZVV10VtPP4FLQsFoswdPjpp5/i3HPPxf/+7//iy1/+8oqvjTQxMSHqjZqcnPRq6NC1x2p8fFwStORCptFo9OrYchwOh8fnLuxRA+aDDX+Xnz/4azE7OyuEQ7PZjPHxcajVasTGxgL4z12HrjQajaTKfnh4uPAa5IIoIYQQspLs378/aMf2Omhdf/31ePHFF5Geno5vfvObeOGFFxAXFxe0hgWaQqEQpVWGYbyq6eT6HIVC4fVzlEql3zWjPD1PLnG7q1rvLf51uRZsY1lWeA2u29yd3xX/XHftJYQQsjaslh6tYPI6CfzmN79BRkYGcnJy8NFHH+Gjjz6S3c+f8cvlkJCQgIiICOHr+Ph4WK3WRZ/H193ij8GvwciTC0VRUVFITEz06247pVLpccFs19fAU6vViI+P9/lcvLi4OMzNzYmGOvnX4Bqm9Xq90LvlietrkCu1QQghZG2goOVD0Arm+OVyyMvLEwWY3NxcSWiSw4cPhmGQn58vGbqTW5w6NTUVBQUFonpT3lKr1SgoKHD7uFygCg8PR2Fhod/fH379wYyMDGFbeno6CgoKRMEqPj5etI87Wq1WeA1ywZAQQghZK3wqWLqaVVRUiOpPlZSUIDk5edHnJSQkAJgPWhUVFZLyDgtraAHzC03PzMwgPDzc5/Cj1Wo91t5KTU2VbIuMjERlZaXfQausrAzJycmiOmZ5eXmw2+2isJiamupVkdewsDDhNVANLUIIWbuoR2sFrXUYbAvrOVVWVspOLF+Ir0DPMAyqq6slBUvlglZeXh7CwsJke7sWo9VqJXWpXC0sVgrMB63q6mq/34wVFRWYmZkRDRPyPXKury89Pd2rocDw8HDhNVDQIoSQtYuC1hoKWsXFxUhJSRG+Lioq8qp3hg8fDMOgpKREcpehXPDIzMxEVFSUX5PhtVotSktL3T4uN3QYERGB0tJSv9+MhYWFsFgsoqHUrKwsxMbGitYpTEpK8moo0PU1LCzmSgghhKwlayZoZWRkiCZ7p6amerWotGuQysjIkNSqklswOT4+HtHR0X4FH5VKhaysLLePy/WSabVaZGRk+B20+GuhUCiEbYmJiYiNjRUdMzo62qt5Z2q1WngNCxfAJoQQsnZQj9YaClp6vV4UmlzvJvSWN5PnAfnhRG8xDONzhX2FQuF12+TIXQu51+DtUCjLsj6/BkIIISceClprKGgB88VA+ZIOWq1W9M0zm81Qq9V+1aOy2+1wOByyw4hzc3OSbXK9PBaLBU6nEyzL+l0SYSmvwRP+NahUKslwqMPhgM1mcxsurVarzysHLPzeLGQ2myU9i+56zhZrHyGEEBJMaypomUwmDA8PA5gvaeAaGvr6+pCSkuJXT9fU1BRmZmYkpQ+cTqdkyRpgvrTEwjA0NDQEi8UCtVrt1yLMHMehr68PaWlpAQ0VrsvuxMXFITo6WvT47OwsRkZGkJOTI/v8sbExn5fhycjIcBs2+de5MGjl5OSIhj55JpMJExMTHodjCSGEBAf1aK2xoDU+Po7GxkYAQFpamhC0nE4nmpubYTAY/ApaQ0NDGB4elgQth8OBpqYmUShgGAZZWVmSoNXZ2YnJyUlERET4FbScTieampoQExMT0KDFLxgOzJeBWBi0pqam0Nra6jZoHTt2DP39/T6dMz4+3m3QcjqdaGxslASt9PR02aA1Pj6OtrY2ClqEEBICFLTWWNAaGRlBTU0NAGDbtm3CcBPHcairq0NJSYlfFdb7+/vR1taGrVu3irbb7XbU1NRIgtaOHTskk+ibm5vR39+P+Ph4nHnmmT63wel0ora2FuvWrfNrMWt3bDYbamtrwXEc4uLiJAtIj4+P4/Dhw9i1a5fs8zs6OtDU1OTTOTdt2uS2LITT6URdXZ1kOPLMM8+UDZjDw8M4cuQIduzY4VMbCCGEkEBYU0FreHhYCFqupR34oHXeeef5ddzjx4+jublZst1ut+PgwYOy2xdqampCR0eHbJ0sb3Ach9raWnzta1/z6/nu2Gw24TWsW7dO8jgftNzp6OgQrrm3PNU3czgcqKmpkQQtd4tXj4yM4MiRIz6dnxBCSOCs9h6ppVpTQWtyclIIRK4fzBzHoaWlBTMzM34dd3h4GF1dXZLt/JCk3PaFurq60Nzc7FVtLzlOpxMtLS1eFWH1hd1uF17D2NiY5HF+6NCdvr4+2WvgidwNBDz+dS4Mq3LhFZgPgu3t7T6dnxBCSGDQ0OEaC1ozMzPCfCHXHhGO4zAwMOB3yDEajRgZGZFsdzqdGBwcFAUrlmVlg9bIyAj6+/v9Wh8R+M9r8GahbF84nU7hmslNap+bm8Pg4KDb509MTPg8R8td7xQw/zqPHz8u6dFyd2fj7OwshoaGfDo/IYQQEihrKmg5nU4hiCycTG21Wr0qYCrHbrfLBhyO42CxWCRztBaemz8//88f/Ln8fQ2ejsu3SS7MOJ1Ot71JwHxo8vU1yV0fV3a7XRLG3D1Hbl9CCCHLg3q01ljQUqvVwpIwC+/6MxgMsFgsmJubEybJG41GqNXqRetahYWFyfZEMQwDg8EgCVpyb5rIyEjhrsepqSkA84VE+Unz/DZ3+CHDmZkZTE1NgWVZr5bLWQzLsoiKigLHceA4TtIOm83m8Tzh4eE+L8Mjd/cgj7+mruGJYRjh+2m32zEzMwODwQCTyQSn0wm9Xi97/Wh5IEIICS4KWmssaEVGRiI7OxsARDW0+JILk5OTGBkZEco0HDt2DHFxcUhISPB43OjoaNE6ijyFQoHs7GxJ0JILEqmpqZienkZiYiI6OzsBzK83GB0dDafTia6uLo89PXwRz/7+fnR2dkKlUqGsrMxju72hUCiE0ggOh0NoG292dtZjOYqEhAThmnvLU7Dlv1cLe9H4azo3N4fu7m5UVFRgYGAANpsNycnJknazLIuKiopV/wNMCCFkZVtTQSs2NhaVlZUAxMvJMAyD8vJyjI6Ooq+vTwhaLS0tKCgoWDRoJSUloaCgQLJdoVCgsrLSq6CVn58PtVoNnU6H+vp6APM9LnzQOnLkiMdhQX7os6OjQ1gCJxBBS6lUCtfMbrcLbeMZjUaPi2BnZWUJz/eWp/URWZZFeXm55FrwPX8mkwlHjhxBeXk5Ojo6YLFYkJubK2m3QqFAWVmZx94zQgghS0M9WmssaMXHx6O6uhqAOGixLIuqqir09PSgp6cHJ598MgCgoaHBbT0nV6mpqbLzl5RKJaqrqyVBa+EyNgBQXFyMuLg4WK1WoRxCaWkpcnJyhJIGnoKW3W4Hx3Fobm7G9PQ0YmJicPHFFy/a9sWoVCrhmo2OjkpKNej1eo9BKjc31+dzeioaq1AosH79ereLe09PT6O2thaXXXYZWltbYTabUVhYKGm3UqnEpZde6nPbCCGEeI+C1hoMWlVVVQCkPVrr1q3Dv//9b/T29grbGxsbZXuqFnK3dI9CoZCtPSXXi1JUVIS0tDSMjIzgtddeAwCce+65ANwX6XTlcDjAcRza2towNDSE5OTkRdvtDZVKJVyzt99+G7W1taLHq6qqUFFR4fb5OTk5Pt9J6SlosSyL9evXu+3Rmp6exqFDh8BxHFpbW6HX65Gfn49XXnlFsn+gbxwghBBCFlpTQctgMAjBybUyO8MwyMvLw8TEhKgUQHd3NyYmJhY9blxcnOyEcIVC4XZIcaGMjAzY7XYolUq0tbUBmA8NwHzQamtr8xi0+B6eY8eOQa1We6xF5QvX1/Dmm28KbeMVFBS4XX4HAJKTk32uVO9pCSH+e7UQ30s4NzeHjo4OYU3EnJwcpKWlSdqtVqsXvbuREELI0lCP1hoLWlqtVphovfCuw9jYWMzNzYlqRU1MTHgVWHQ6nWwvDMMwiIuLk92+UHR0NDiOw+joqFCTy2w2A5gPUWNjY16VKZicnATDMAgPD190X2+wLCu8Bo7jJPXCrFarxyAVGRnpc6BZ+L1x5e6a8s+xWq0YGxsT7pB0OByIioqStFuj0VDQIoSQIKOgtcaClus3fGERUZZl/f5mLnweXwqBP7YvbfN2f2/aIcfpdHp1joXXx93x3bWZf74/13WxIT1frtFSrykhhBCyFGsmaC0smjk2NgaHwwG1Wi30yBgMBuj1emGf2NhYj/OF3JmamoLZbAbLsovesbiQQqFAYmIigP/cfccwDBISEjwWBl1IrtcHmK9AHx0dLZqjJmdqagoWiwUKhUJYaFuv1wtt48kNmdrtdoyOjgKY76lbrA7ZQhMTE2577xiGkbTBlVqtRnx8PBiGQXR0NPR6PViWlTxHrVav+r+SCCFkpaMerTUUtBYOAXZ1dcFsNsNgMAhBKzU1FUlJScI+fB0rX/X392N0dBQqlcrnoKXRaIQ5UfwkcpZlkZ+f73GO1kKur4PHT5YvLy9fNGj19fVhYmJCCC7AfHhbOOdMbtK9xWLB0aNHAczfOelr0Ort7YXRaJR9jA+v7n7wdDod8vPzwTAM0tPTkZCQAJVKJWm3Uqlc9T+8hBCy0lHQWkNBa+GC0Y2NjTAajUhJSRHKE+Tl5YnmG5WUlPgclACgs7MTnZ2d0Gq12Lx5s0/P1Wg0wp2KfMjj7170JWjJzZtyOp04dOgQsrKyFq2K3tHRgd7eXuh0Opx00kkA5oPowrso+WKmrmZnZ3Ho0CHhObGxsV63GwBaW1sxPDws+5hKpcLJJ5/s9gcvIiIC5eXlYBgG+fn5SElJgVqtlrRboVDQkCIhhJCgWzNBa+GCyEeOHMHo6Kiop6OgoEA0iby8vNzjMJU7HR0dqKmpgV6vB8dxPqXxsLAwbNiwAQCEgMKXNPBl8rbcZHiO41BbW4szzzxz0ee3tbXhyJEjojpiaWlpQtt4clXfZ2dncfDgQQDAKaec4nWbec3Nzejq6pJ9zNMdicB8L2B1dTUYhkFhYaEwTLqw3YH4K4sQQohn1KO1hoLWwh6t5uZm9Pf3i0ot5OTkiIbUioqKfO6NAebLQhw+fNivtfQ0Go3Qw8b3aPHLxfhCbmjQ6XSioaFBEjrldHZ24vDhw6LXn5ycLCm2KlfQdW5uDocPHwaw+BqNctra2tDY2Cj7mE6n8xg4XXu08vLyoNVqoVarJUVVaZI8IYQEHwWtNRS0+FIJvGPHjuHYsWOiOUZJSUmiD9+0tLRF5zLJGRoaQnd3t1/zu1QqlTAcx0+GZ1lWdojOE7kQwXEcuru7JddCzuDgILq7u0Vz22JiYiQ9Za71yHhWqxXd3d0ApAHXG/39/cLzF1osaIWFhSErKwsMwyA5ORksy0KpVEquH/VoEUIIWQ5rJmgtnN9kMpkwPT2N2dlZYdvCOwxd70D0xdzcHKanp/1aR49lWdlK6r5WV3fHaDR6NddrdnYW09PTomui0Wi8mtjucDiEYqu+3CnJm5mZEZ4vd2xPFAqFcCeka9sDdf0IIYR4j3q01lDQWtjDo1aroVaroVAohNIPKpVK+IZarVahN4vjONhsNuFrp9PpMUCwLAu1Wg2NRgOLxSJ7bm/Y7XahppQ/PWtyvC1roFKphGvkDdfyGXa7XXie62vn91EoFB5DqFKpdHted9v5YzMMI9vL5uk5fK/XSsG/vwL1PSeEkFChoLWGgtbCD62kpCTY7XZERkair68PwPwcpLCwMDgcDvT19SEjIwNKpRJWqxX9/f3CkNTs7Kzbu+KA+YnoqampiIyMxPHjx0VvEoZhkJmZ6dX8oImJCRiNRr+GDuUwDIOUlBSveqXi4uKQmprq1V2XTqdTuIbAfLtTU1MB/Gf40+l04vjx4+A4DtHR0R6HVRMTE4XnL+Su4v3g4CDsdjt0Op1saQs5fHsiIyPd1h0LBbPZjOHh4YB8zwkhhITWmglaC4cF8/LyYDAYkJCQgKamJgDzw0thYWGw2+1oampCUlISlEol5ubm0NzcjIyMDCgUCkxNTQnPkWMwGFBaWgq1Wo3m5mbJ42lpaV4FrePHj6Ovrw9KpRKZmZkB+auguLjYq+V5MjIyUFpa6tU8M/568UZHR1FaWgrgPwVNHQ6HMMG9oKDA43Gzs7PdDhFqtVrZ63D06FGYzWbEx8d7FbScTidaWlrgcDiQmZm5ooKW0WhES0tLQL7nhBASStSjtYaC1sJwUV5eLqwLWFtbC2C+blZcXBxsNhtqa2txyimnQKfTYWZmBrW1tdi+fTsUCgXGxsaE58iJjY0V6lgt3I9hGGzfvt2r4a3u7m7U19dDrVZjx44dS36zsSyLqqoq2WruC/FFP72Zp2a321FXVydMUuc4DuvXrwfwn7sSHQ6HsE9ERITsYtu8oqIit3OqXId3XR05cgRGoxE5OTn40pe+tGibOY5DXV2dMARcXl6+6HOWy9TUFA4fPoydO3eGuimEELIkFLTWUNBaGC7KysowOzuLoaEhvP322wCACy64AACEoGWxWABACFr8fKnx8XGPQevMM89ERkYGrFYr/vCHP4geYxjG6wniXV1dqK2tXbR2lLcYhkFVVZVX4SkvLw+RkZFendtut6Ompkb4OiYmRriWfNCy2+2ora0Fx3HIz8/3eLyioiK3vVIKhcJt0BofH/e6qCsftGw224rqzQLmg9ahQ4d8rsFGCCFk5VkzQYufK8QrKCgQ1tPjh7T4ZV/sdjsaGxuFydL80CEftCYnJ93WeQKAiy++GKWlpTAajWhqahKVI2BZ1usw0NfXh8bGxkVLGnjLl6HDzMxMxMfHezVJ3OFwiF5nbm6uMHTI90w5nU40NTXB6XR6nN8GzNcz40PuQu4WqW5pacHIyIhsXS85HMehubkZFosFZWVlXj1nufBDh4QQstpRj9YaCloLe2aSkpLAcRyOHTsmTOTmgxU/GZ7vebJarejr6xOCxOzsrGjy90I6nQ5paWmYmJjAsWPHJI/zgW0xExMT6OvrC2jQSktL82rYMj4+Hg6Hw6s3uMPhEL3OmJgYpKWlAYDoTs3e3l4AcFu6gZeYmOj2Grlrz8DAAAYHBxcNcTyO43D8+HGYzWaMj4979ZzlMjs7K0zUJ4SQ1YyC1hoKWgu/UfyddyqVSijgyfc0cRwHs9ksfNA5nU7R1w6Hw2PRT4VCAa1WC41GI9mPYRivP0BtNhvMZnNASw94u8CzSqXyukwCIC4Ia7VaJcGW4zhYLBZwHLfo0Kk/ZQ0sFgvMZrNPdbvMZrPPz1kO/PuPEELI6rdmgpY7CoVCmLPEBxqWZRERESHcGcjvw4c1pVLpcZ4TfxyGYRAZGSnqnXEd+rLb7ZIPVJZlhTsktVot9Hq934VT3ZmbmwPLsl6HrsUwDIOIiAghQMoNTfL7OJ1OnwKct/jrtHCI2JOIiAgolcqAzYELFKVS6dXwLiGErHTUo0VBCxqNRqhXxH/gKhQKZGZmCoGJ34f/Zuv1eo81jvigxLIsMjMzRT1Yrmvszc7OCsNpru3hJ4vHxcUhKysLOp0uoG+0wcFBaDQapKSkBOR4fJ0v/nXKHdf1Wng7j8oXaWlp0Gg0Xi8CzjAM0tPTYbVa/VrPMpjCwsKotAMh5ISx1n+XrfmgFR4eLtzaz9+ZqFQqUV5eLvT46HQ6lJeXC9XMo6OjPZYD4BeTViqVqKioEPVoKRQKIcBNTU2hvr5e9NzIyEghaGVkZKC8vNxt7Sh/dXZ2IiIiImBBa+HrlAuhCoUClZWVcDgcovUlA6WkpATj4+PIycnxan+GYVBRUQGLxSLMJ1spIiMjhZsJCCGErG5rPmjp9Xps3LgRwH/ukFOpVNi4caMQtMLDw1FdXS30RMXGxgrPkcP32CgUClRXV0se5wPb5OQkDh48KHosMTER5557LoD5wp1ms9lt7Sh/tba2IiEhAZs2bQrI8ZRKpeh1xsfHy+7D19YKVMBzVVFRgZmZGWRkZHi1P1/qgi9YupJERUWhqqpqzf8VSAhZ/WjokIIW9Ho9qqqqAPynR0ulUqGqqkrUo7Vu3TohaMXExAjPkePaoyW3H9+jNTk5ibq6OtFjrh/6mZmZ0Gq1fi1O7Ul7e3tAJ1svfJ1yc8oUCoWwTzB6tMrKymC1Wr2qZA/MD2WuW7cOTqczKO1ZCoPBgMrKylX/y4UQQihoUdBCWFiYUKWcn1ulVCpRUFAgTNrm9+GDVmRkpMfK5nzQUCgUKCwslMzR4oOTyWRCa2ur6Lmuw4zJyckwGAxua0f569ixYwGdkK5QKETXQ+7YrtfCm8r0vsrNzYXD4fB6gj/DMMjPzwfHcStu4rler1+0qCshhJDVYc0HLbVaLUyg5gMQy7JITEwUvlapVEhISBDCjlar9Tjpmg9kDMPILsrMH8disWBoaEj0GL90DzAf6IIRSsbHx2WH9/zFXy+eXCh0vRberPPoK766uy+BlG/PSvtrSa1WB/T7QwghoUI9WmsoaHEc57Z+FR+o+Mdde51c93F9vrfDeZ724zhOUpjT6XQK53ENJIFcjsXTtfCXN9djKUOgC3sFFz7memxPr831uXLPCeUPtD/vL0IIWckoaK2hoDU+Pi4sueNKpVIJc6qmp6dFdbXkjsFxHDQaTUB6mlQqlWSdvYiICIyNjQn/zw+FjY2NISoqKiDFSw0GgzBMulqYTCZYLBYwDCMqx+B0OjE+Po6YmBiwLAubzYapqSm3x9Hr9ZK6WWazGSaTCQCE44QC//5Sq9VuF9UmhBCyuqyZoNXZ2Sk7F0ev1wtBq7+/HxqNRjZocRyHjo4OOJ1OxMXFBSRoRUREIC8vT7QtMTER7e3tAOYXdtZoNHA6nejo6EBpaWlAipempqZ6XW9qpRgaGsLo6ChYlkVMTIzwF47NZkN7e7twV+js7Kxw/eRkZ2dLgtb09DQ6OzsBQHQTxHLr6uqC3W5HdHQ0BS1CyAmBerTWUNA6dOiQbNXwlJQUYVHh9vZ2REREuK3FdPjwYdhsNhQWFkoCkj/42/hdabVa1NbWApjvXYmLi4PD4UBdXR2ys7MDErTy8/Nl546tZD09PWhtbRVKb/AsFgtqa2tRUVEBlUoFo9EoXD85er1eEjJHR0eF55SUlIQsaB05cgRzc3PIzs5GYWFhSNpACCGBREFrDQWturo62TX0XO+WO3r0qNsq4RzHoa6uDmazOWAfxFFRUdiwYYNo2+zsrFBbi6875XQ6UVtbi507dwbkvAUFBUIv3mrR3d2NgwcPQqvViuarWSwWHDx4EJdffjl0Oh2mp6cltclcFRcXS7aNjo4Kz/nqV78anBfghUOHDsFoNAprbhJCCFn91kzQamhokJ1g7Lqto6MDc3Nzss/nOA4NDQ2YmZlBenp6QNrE10tyNTAwgH379gEAJiYmAMwHrfr6eszMzATkvLm5uStufb/F9Pb24vDhwwgPDxdNGrdYLDh8+LCwMLTRaMThw4fdHufss8+WbBsfHxeeY7VaA9xy7zU0NGBycjIoSxQRQkgoUI/WGgpa3d3dst8s12GkwcFBt/WlOI5DV1cXTCYThoeHA9Km8PBwyTAlx3HCfCGj0QhgPmh1dnYGLAQkJyevurvahoeH0dnZCb1eLwpadrsdnZ2dQtCam5sTrp+c6elp2W38c/jjLDeO49Dd3Y3x8XEaNiSEnDAoaK2hoOXuTjT+bjP+/2dnZz0ew2g0etzHFyqVSlLJPDw8HJOTkwD+07vCcRwmJiYCFgKCUZsr2GZnZzE5OSm5Bg6HA5OTk0KZDLvdLlw/ORaLRXYb/5xQDttNT09jcnIyYD2XhBBCQm/NBC2lUimbil3LJfD72O122TIKCoUCKpVK6A2y2WxeV1h3Op2SD3GWZSU9SwzDCMd0LTPgrv1rBX/tF35f+OvFMAwcDgccDofH74lc6QaWZYXnhPIaK5VK0fuLEEJWO+rRWkNBKykpSfZD1rVHia9TNTQ0hNTUVNljzM7OwmAwwOl0YnBwEMnJyV7VtjIajZJeNZ1OJ6mjpVQqhbX3+LskWZZFUlKS7GT+tcJgMCA5OVlS/0uhUCA5ORksy2JqagozMzMe1y6Uqx+m0+mE54Qy5CQmJkKtVtMcLULICYOC1hoKWgUFBbKBaOEizlarFe3t7ZKgxTAMCgsLMTc3h5SUFDgcDjQ3NyM2NtaroDU6OoqOjg7RtsTEREnQ0mg0KCoqAvCfxalZlkVxcfGqm8AeSCkpKSgqKoJWqxX90KnVahQVFUGlUmFwcBBjY2PC9ZMjt+h0VFSU8JxQhVl+7cXp6emA3WxBCCEk9NZM0Fq3bp1sWYasrCzh//Pz89HT04P6+nps2bJFtB/DMKiqqoLFYkFWVhZsNhtqamqwYcMGr6qsDwwMoKamRrStsLBQctehVqtFdXU1gP+se8iyLNavX7/iFj9eTllZWaiuroZarRYFLY1Gg+rqaqhUKnR3d2NwcFC4fnLk1hCMi4sTnhOqGloAUFlZidnZ2YDUaCOEkJWAerTWWNCSC0SuPUoFBQUYHR1FfX29ZD+GYbBu3TrY7XZkZmbCbrfj4MGD2L17t1fn7+/vl9R3kusJo6AlLzs7GyzLSuaquQatnp4eDA0NYdu2bW6Ps1jQCuXw7Lp162CxWDwOfRJCyGpCQWsNBa2SkhLZququ1eIzMzNx6NAhtLa2SvZjGAYlJSVwOp2IjIyE3W5HU1OT7F1scoaHh9HY2CjalpKSItlPo9EIler5uToKhQKlpaWyle3XitTUVERERIBlWcnQYVlZGZRKJfr7+zE6OipcPzl8eF24jX9OKINWUVERHA5HQKr/E0IIWRnWTNBKTU2VXT/OdfJzQkIC1Go1+vr6ZI+RlpYGjuOgVCoxPT2NY8eOyS5ULWd6ehq9vb2ibaOjo5L9VCqVMEeHH8ZiGAbp6elrejJ8bGwsDAaD5C8bpVKJ9PR0KBQKjI2NLTrHSe4ahoeHC88JxKLd/kpNTQXHcXTXISHkhEE9WmsoaOl0ukXnUmk0GigUCrfV4V17lDiOw8zMjKh4pic2m01yXLneMIZh3N4Zt5ap1WrZkOR6vSwWC+x2u8/XSqlUhjRg8dZyjyUh5MREQWsNBS1vKZVKrz6oGYZBeHg4zGYzZmdnwbKsx7sCVSqV5IPU17sIzWYzWJYNeM/W3NycJDDyodMTPih6O4FcrtCrp2vNcZwQTtVq9aJhSKPRrOk7MwkhhKw8FLQW0Ov1SEtLW3Q/lmWRnp6O0dFR4QPe9Q7GhSIjI0WlJABISjssZnBwEDqdDgkJCT49bzH9/f2SIdD09PRFJ9+PjIyAZVnZuWYLOZ1OydApMH+np7tAZ7PZhOekpKTIDv26io2NhdlsXrQthBBClgf1aFHQkoiOjvZqrTmlUony8nL09PRgYmICUVFRHoNWYmKiZJJ2RkaGT23r7OxEXFxcwIPW0aNHJcu+REdHLxq0uru7oVarvQpaDocDDQ0Nku05OTlug5bFYhGeExYWtmjQSk1NDWl5BkIIIWIUtEIctD7++GPcf//9qKmpwcDAAF577TVceOGFwuMcx2Hv3r146qmnMDk5iVNOOQVPPPEE8vPzg9amuLg4rFu3btH9lEolNmzYgPb2djgcDqSmpmL79u1u909OTsbGjRtF23ytl9TU1ISsrCxUVFT49LzF1NfXY3x8XLStsrJStOC2nPb2dmi1WmzatGnRc/DlMFyHKBmGwdlnn+12KNRsNuPAgQMA5gPZwh7BhbKysmTvKiSEEEJCJaRBa2ZmBpWVlfjmN7+Jr3zlK5LHf/nLX+KRRx7Bs88+i+zsbPz3f/83du7ciaampqDNxYmLi/NYHoCnUqmwfv16/O53v8P4+DiMRqPH/VNSUlBVVSXatliQWai1tTUodx42NjZicHBQtG16enrR53V0dHhd28vhcKCurk4StDwt4mw2m1FXVwcAOOussxY9R0ZGBg0dEkLICkI9WiEOWrt27cKuXbtkH+M4Dg899BB+9KMf4YILLgAA/P73v0diYiJef/11XHrppUFpk8Fg8KqnSaFQoKioCH19fejt7V10onZcXJxksWNf747r6enxOZx5o729XVLSYuFQopy+vj5ERER4dQ6Hw4GWlhafgpbVakVLSwsASNaJlJOcnAy73e5VewghhCyP1R6UlmrFztHq6urC4OCgaDjOYDDgS1/6Ej7//HO3QctisYjKJnjTM+NKp9N5Nc+HZVkkJiZicnJSWFzaE71eL7nrUG6Ra09GR0cX7Tnzx+joqKRHy5tCrBMTE3A6nV6dg1+Ee2HQ8vR8h8MhtMtdyQ1Xi83hIoQQQpbbig1a/Afswh6cxMRESShwde+99+Kee+7x+7wMw0CpVAqBwFMSV6lUcDgcsNlsi/aksCzrc7BayOl0eh1sfGG32yV3HXpTH8zhcHjskZI7j2v7F/srh+M4oV3etGc1FPr09Dpcr4c37z9CCFnpaOhwBQctf915553Ys2eP8PVilcLlcByHiYkJAPM9XJ7mgxkMBkRHR8NgMPjXYB9EREQEpagl/xpcLRzmlKPX672eo8UwDKKioiQ9Wp5+gBQKhdCuE6EqvslkgtVqdft4dHQ0GIaBzWYTei4NBsOqCJCEECKHgtYKDlpJSUkAgKGhIdGw3NDQkMe7AjUazZJv8bfb7ejs7ATHccjIyPAYtNLT0+F0Or2qvbVUaWlpiI2NDfhxMzMz/Zo/lpyc7PW6fAqFAnl5eZKg5amXT6VSCfPlvJ0LtpINDQ1J7u7k8YuWK5VKzMzMoKOjAwBQWlq65lcFIISQ1WzFBq3s7GwkJSXhvffeE4LV9PQ0/vWvf+F73/teUM9tt9tx+PBhAPPV2z1NQC8qKkJkZKTHGlqBkp+f71XNKl8VFxdLApw3wSY7O9vrHjaFQoHKykrRUCPLsh5vItBoNCgvLwcASY/batTd3Y3u7m63j5eXlwvraNbX1wOYv8YUtAghqxX1aIU4aJlMJrS3twtfd3V14dChQ4iJiUFGRgZuueUW/OxnP0N+fr5Q3iElJUVUaysYrFarUL8pMzNT+LCXU1ZWhrS0NMTHxwe1TcB8IFps0r0/KioqJDcNeDOxPD8/3+shPYVCgQ0bNkh6tDwFrbCwMKFGl69V9Fei9vZ2oVyFnEsvvRQajQaTk5PC+2/79u0nxGsnhKxNFLRCHLQOHjyIbdu2CV/zc6t2796N/fv347bbbsPMzAy+853vYHJyEqeeeir+9re/BX09O7vdjkOHDgEATj/9dI/7FhcXY25uzuu5SkuRn58flDvriouLJXcZetuj5e1izEqlEpWVlZLtnuYfaTQaoTfzROnR4t9XCzEMI9xQMT09Lewntz4kIYSQ1SOkQWvr1q2L3oX1k5/8BD/5yU+WsVXzQaujowNOpxOTk5Me983IyIDD4fA6cCxFenq6V5PUfZWZmSm5m9Gb4aqUlBSv/9JgWVa2PpmnoOU6R8vbuWAr2eDgINra2mQfY1lWGFadmZkR9vOmzAYhhKxU1KO1gudohZLT6cTo6CgALFppfDnuNuRFRkYG5Q0XFRUl2ebNeXwJPwzDyC6Ps9hdh/xzVvsPGjA/VO5pMjz/R4fVahX2owKshJDVjIIWBS1ZrnOHFvsGuz5ut9uhVCpl610Foo6Wv2821/bwr4vjOKEHxdveuIXH8bU9nvbn26NUKuFwOMBxHBiGEXq8+PMu9RqGkqfJ/67XZrG5a4QQQlYP+m0ug6/6Dni/TI7NZsPIyAiSk5MxOTkpqWQeGRkZshIF09PTmJmZAcMwwl2Lc3NzQq2wpKQkr2o1mUwmGI1GMAyD5OTkgP6VYbFYMDExgeTkZIyPj8NqtUKlUiEhIQHA/BI8TqczKOUtlovBYHB7B6trqQuNRiPsF4yhYkIIWS7Uo0VBS5ZSqURBQQEAyA53yTGbzWhtbUViYiKOHz+OkZER0ePZ2dkhC1pDQ0M4fvw4WJZFUlISWJbF5OQkWltbAQCxsbFeBa2RkRH09PSAYRgkJiYGtJCmyWRCW1sbkpOT0dPTg+npaeh0OiFoDQ4OwmazreqglZqaKryvFnLtvdPr9cJ+wb7xgxBCgomCFgUtWSqVClVVVQAgfNAvZm5uDnV1dTjllFPQ2dkpKlsBzJcqyM7ODnhbvXHs2DEcPnwYCoUCp512GoD59Q35UgMbNmzw6gP9+PHjqKurA8uyOPXUUwMatKamplBfX4/TTjsNLS0tGBoaQkxMDE466SQA83fsmc1mVFRUBOycyy07O9vt2puuw4oGg0F4/1ENLUIIWd0oaMlQqVRC/Sa+Qv1iZmZmcPDgQTgcDrS3twt1kHiZmZkBb6e3enp6cODAAahUKjidTigUCoyMjAhtvOqqq7w6Tm9vLw4cOCDcIRfIYa3JyUnU1taC4zg0NTWhs7NTVJy1q6srKAtqL6ecnByPqxbwQSsqKkp4/y1H2RBCCAkW6tGioCVLqVSitLQUgPeFMs1mMxoaGuBwONDb24uGhgbR44vV4wqm/v5+NDQ0QKVSCXe2jY+PC230tP6eq6GhITQ0NEChUAR8cevp6Wk0NTUBADo6OtDY2IiZmRnh8b6+vkVLbax0mZmZsnd48vgewoiICOH9Rz1ahJDVjIIWBS1ZCoVCWFLH23UTLRYLent74XQ6MTw8jJ6eHtHjU1NTgW6m18bGxtDT0wO1Wi0ELaPRKLTR2xICExMT6OnpCUrQmpmZEdozMDAgtJc3OjqKsbGxgJ5zucXHx3ssvMoHLZ1OJ7z/ToTFtAkhZC2joCWDYRifC2Q6nU4YjUZwHAez2QyTySR63Nteo2CwWCwwmUzQaDRC0LLZbEIbvQ1NVqsVJpMpKCUWnE4nZmdnwXEcZmZmYDKZRFXRzWaz5E7O1cbbie0KheKEKNBKCCHUo0VBa1E2mw12ux0Mw3j8oGRZFjqdDmazGSzLSvYN5MRxntlsdltZn2VZoTdOpVJBq9VCq9UKb1ilUim00dvgxD8nGDWe+Gs2NzcHtVottJfHvwZ3+GuhUCioF4gQQlYICloUtBY1NTWFiYkJMAyD3Nxct99wpVKJ1NRUDAwMQK/XIz09XfR4MCrIDwwMuB32U6lUwvBTdHQ00tPToVarhfa7ttHbEBgVFYX09HQoFIqAv/HDwsKQnJyM48ePC+11vRFhsRIU/LXQ6XRITU0NaNsIIYQQf1HQWsTg4CDa29vBMAyys7PdftjrdDqUlJTg6NGjiIqKEiYz87wtE+GL1tZWt0sEuc7zSUlJQWlpKVQqlRCQoqOjhTZ62wOUmJiI0tJSsCwb8B66iIgIFBQUoKmpCcnJydBoNKLAlJqa6nFBbf5aJCQkUNAihJAVgnq0KGgtqq+vDzU1NVAoFNi1a5fHoLV+/Xo0NDQgNjYW8fHxoseTk5MD3rb6+nq3JQ+io6OxY8cOAPMLX1dXV0OhUAjDhHFxcaiurgbgfdBKS0tDdXV1QJYTWigqKgrl5eWora1FZmYmsrOzRcVJs7KyPM7ROnLkCKanp5GXl4eTTz45oG0jhBDiHwpaFLQW5Rq0PE0a54PWb3/7W2zfvh25ubmix11rQgVKfX2920WKXZd64YcIWZYV3rDx8fFC0PL2zko+aLlWMQ+UqKgoVFRU4Mknn8TXv/51JCQkiCaEZ2dnw2azuX3+4cOHMT4+LqzfSAghhKwEFLQWMTw8jObmZmGxaHe0Wi2KiorQ3t6OSy65BMXFxaLHPdVP8ldbWxuGh4dlH3Pt6UpJSYFerxetpxcdHS200dvCowkJCdBoNKLjBEpERATy8/PR0tKC5ORkFBQUiNqVkpLi8frz12I1L9FDCCEnGurRoqC1qKmpKfT390OhULi9ww+YDyvJyckYGhqCTqeT9GAF467DwcFBDA4Oum0Pz2AwSMoFuLbR27sIIyMjhUrlgX7ja7VaJCQkYGBgAAaDASkpKaJzLBZUh4aGMDAwsOprbRFCyImEghYFrUXZ7XZYrVZRVXU5DMNArVbDZrOBZdllKTFgtVrd1udyHWZTKBSSoOdPG+WOEyj89bNarVAqlZK2LRYG+WvhbfFVQgghZDlQ0FqETqeDwWAQ3bHnDsMwMBgMQakzJcdgMLidIB4REbEsbQgk/vr5E+YMBgNmZ2dDujagzWYTFVkFqPgoIWRtox4tClqLiomJQXZ2NpRKpVfzkjIzM5ftgzUjIwNhYWGyj63GEgcsyyI7O9vryfmuMjIyoNVqg3J3p7dMJhO6u7tF28LCwlBUVBSaBhFCyAqw2oPSUlHQWkRycjIqKyu9KmnAMAxKS0s91nsKpJKSErcLLa/GSeEsy6KystJtePSkuLgYycnJyM7ODkLLvDM5OYn6+nrRtpiYGApahBCyhlHQWoRrSQNverSqqqqCcoehnIqKCszMzMg+tlxhL5AUCgXWr18PnU7n83P5a5GRkRGElnlnfHwcNTU1om2pqak477zzQtQiQggJLRo6pKC1qLS0NADwqho6wzCoqKhYtqBVXl4Oi8Ui+5i3CxivJEsJWvy1WK5rL2diYgK1tbWibe4KyhJCyFpAQYuC1qLi4uKED35vvtm5ubnLNiE7OzvbbW2pYN0dGEwsyyIvL8+vkMhfi1AuKG00GtHW1ibaRgtcE0LI2kZBaxHh4eE+Ba3Y2NiAF/N0JyYmZlnOs1wYhkFcXJxf14+/FqH8y8disWBkZES0zd0cOkIIWQuoR2sNBS2n0wmO43z+hvn6JlmukOXNufjerkC80ZeLv9dvOa87IYQQ71DQWkNBa2RkBCzLrspJ4v5wOBxC74rBYPDrTj7iG61WK1pjEphf6ogQQsjatWaCVnt7OxiGWTNBy2634+jRowCA/Px8ClrLICIiAgUFBaJtmZmZIWoNIYSEHvVoraGgdeTIEYSFhSEvLy/UTVkWVqsVhw4dAjDfqxLKQp5rRXR0NNatWyfaxt+1SgghaxEFrTUUtGpra5GUlBTqZiwbi8WCgwcPAgDKyspC3Jq1ISYmBhs2bBBto6FDQghZ29ZM0GpoaEBFRUWom7FsrFYrDh8+DAAYGxsLcWvWhqioKFRWVoq2rcZ6ZoQQEijUo7WGglZvby9GR0dD3YxlY7fbhXX3qGjm8ggPD0dWVpZo22qsZ0YIIYFCQWsNBS2j0Qiz2RzqZiwbp9OJ6elpAPO9WyT4VCoVVCpVqJtBCCFkBVkzQWutfAjabDZwHAebzSZUJadeFUIIIaFAPVprKGilpKSEdB285TIyMgKz2YzR0VGkpqYCwLItCUQIIYS4oqC1hoJWUVHRmrjrsLu7G+Pj4zAajSgtLQVAd74RQgghobJmgta6deuQnp4e6mYEXWtrK44dOwYAWL9+PQAgPj4+lE0ihBCyRlGP1hoKWpWVlcjIyAh1M4Lu6NGjaG5uhl6vx1e/+lUAQFxcXIhbRQghZC2ioLWGglZRUdGaqI7e1dWFxsZGJCYmCkOHMTExIW4VIYQQsjatmaCVmpq6JuYqDQ8Po6+vDyzLCsu/rIW7LQkhhKw81KO1hoKWVquFUnniv1yr1Qqz2Qyr1UpVyQkhhIQUBa01FLRWIrvdLhRR1el0YFl2ycfU6XTQ6/VU0oEQQghZAShohdDs7Cx6e3sBAHl5eQHpgUpKSkJWVhZSUlKWfCxCCCFkKahHi4JWSE1NTaG+vh7A/ByyQAStvLw82O12JCQkLPlYhBBCyFJQ0KKgFVKTk5M4ePAgAGDLli0BmaxfWFiIiIgIREZGLvlYhBBCCFkaClohNDk5ibq6OgDA3NxcQI5ZUFCAxMREmghPCCEk5KhHi4JWSJlMJrS2tgKAMCl+qdLT05GYmLgm7rAkhBCy8q32oLRU9GkcQhaLBUNDQwDm70AMhJiYGHAcF5BjEUIIIWRpKGiFEMdxcDqdATsWgICUiCCEEEICgYYOKWiFlEqlEtYhVCgUfh/HZrNhamoKABAVFUXDhoQQQlYECloUtEIqIiICeXl5AACNRuP3cWZnZ9He3g4AKC0tRUREREDaRwghhJCloaAVQlFRUaiqqgIwX9HdX9PT06itrQUAZGVlUdAihBCyIlCPFgWtkIqKisKGDRsALC1oTU1NCfW4duzYEZC2EUIIIUtFQYuCVkgZDAZUVlYCAMLCwvw+jslkwuHDhwEAMzMzAWkbIYQQQpaOglYIhYeHIycnBwCgVqv9Ps7c3Bw6OzsBBK4eFyGEELJU1KNFQSukVCpVQJbdsdlsmJycFP6fEEIIWQkoaFHQOiGwLAuVSiX8PyGEEEJWBgpaJwC1Wo3k5GTh/wkhhJCVgHq0KGidEMLDw1FUVAQAtJg0IYSQFYOCFgWtE4LBYEB1dTUAUA0tQgghZAWhoHUCiIyMFIKWXq8PcWsIIYSQedSjRUHrhKDX61FWVgZgaYVPCSGEkECioEVB64Sg1WqRnp4OYGlrJhJCCCEksChonQBYlqWeLEIIISsO9WhR0FrV5ubmwHEcFAoF9WQRQghZcShoUdBa1Y4fPw673Y7w8HBh6JAQQgghK8eqKCP+2GOPISsrC1qtFl/60pfw73//O9RNWhFaWlrQ0NCA7u7uUDeFEEIIkeB7tJb6bzVb8UHrpZdewp49e7B3717U1taisrISO3fuxPDwcKibFnKHDh3CgQMHcPTo0VA3hRBCCJGgoLUKgtYDDzyAb3/727jmmmtQUlKC3/zmN9DpdHjmmWdC3bSQa2hoQF1dHdrb20PdFEIIIYTIWNFBy2q1oqamBtu3bxe2sSyL7du34/PPPw9hy1aGtrY2tLS04NixY6FuCiGEECJBPVorPGiNjo7C4XAgMTFRtD0xMRGDg4Oyz7FYLJienhb9O1GNjIxgcHAQ4+PjoW4KIYQQIhGqoLWS5nav6KDlj3vvvRcGg0H4dyLfjWez2WCz2eBwOELdFEIIIWRFWGlzu1d00IqLi4NCocDQ0JBo+9DQEJKSkmSfc+edd2Jqakr4R8NqhBBCSGiEokdrpc3tXtFBS61Wo7q6Gu+9956wzel04r333sPmzZtln6PRaBAZGSn6RwghhJDlt9xBayXO7V7xBUv37NmD3bt3Y8OGDdi0aRMeeughzMzM4JprrvHq+RzHAcAJOVfL6XQCAOx2+wn5+gghhCwd//nAfx6G4tyBOMbCY2k0GsmqKJ7mdre0tCy5Lf5Y8UHr61//OkZGRvDjH/8Yg4ODWLduHf72t79JLqI7RqMRAE7ouVrvv/8+DAZDqJtBCCFkBTMajcv2WaFWq5GUlBSwz169Xi851t69e3H33XcH5PjBtOKDFgDceOONuPHGG/16bkrK/2/v3oOivM4/gH8Xwn3BRUFucg0XRYEgJgTTeoNyiWVQUyWWAaQaq0KURE01EwHTTDE0MV6KcWpmQDMOGqNoSxUhcrFSBBYkIFiKiGIT0AhBQURg9/n9YXl/roDcXFeW5zOzM7znnPe8z3PO63B4L6slqqur4erqips3b47LW4n37t2DtbU15z9O8wd4DDj/8Z0/ML7HgIjQ1tYGS0vL53ZMXV1d1NfXo6ur65n0R0R9biH293/8juTZbmUbEwut0dDQ0ICVlRUAjPtntjj/8Z0/wGPA+Y/v/IHxOwaquOuhq6sLXV3d53rMx5/tXrRoEYD/f7Z7pBdsRkvtF1qMMcYYGz9G+2z3s8YLLcYYY4ypjdE+2/2sjYuFlo6ODuLj4/u9nzsecP7jO3+Ax4DzH9/5AzwG481onu1+1kSkivc9GWOMMcbGgRf6C0sZY4wxxsYyXmgxxhhjjCkJL7QYY4wxxpRE7RdaycnJsLOzg66uLry9vVFcXKzqkJQiISGhz/8NNXXqVKG+s7MT0dHRmDRpEsRiMd56660+X+g21pw/fx7BwcGwtLSESCTCyZMnFeqJCHFxcbCwsICenh78/PxQW1ur0KalpQVhYWEwMjKCRCLBypUr0d7e/hyzGLnB8l+xYkWfcyIwMFChzVjOPzExEa+++ioMDQ0xefJkLFq0CDU1NQpthnLeNzQ0YOHChdDX18fkyZOxefNm9PT0PM9URmQo+c+bN6/PObBmzRqFNmM1fwD48ssv4e7uLnw3lo+PD86cOSPUq/P8s7FDrRdaR48exfvvv4/4+HiUlZXBw8MDAQEBuH37tqpDU4rp06ejsbFR+Fy4cEGoe++99/D3v/8dx44dQ35+Pn788UcsWbJEhdGO3v379+Hh4YHk5OR+65OSkrBnzx7s378fRUVFMDAwQEBAADo7O4U2YWFhqKqqQnZ2NjIyMnD+/HmsXr36eaUwKoPlDwCBgYEK50RaWppC/VjOPz8/H9HR0bh48SKys7PR3d0Nf39/3L9/X2gz2Hkvk8mwcOFCdHV14V//+hcOHjyI1NRUxMXFqSKlYRlK/gDwzjvvKJwDSUlJQt1Yzh8ApkyZgh07dqC0tBRSqRQLFixASEgIqqqqAKj3/LMxhNTYa6+9RtHR0cK2TCYjS0tLSkxMVGFUyhEfH08eHh791rW2tpKWlhYdO3ZMKLty5QoBoMLCwucUoXIBoPT0dGFbLpeTubk5/fnPfxbKWltbSUdHh9LS0oiIqLq6mgBQSUmJ0ObMmTMkEonohx9+eG6xPwtP5k9EFBkZSSEhIQPuo075ExHdvn2bAFB+fj4RDe28P336NGloaFBTU5PQ5ssvvyQjIyN6+PDh801glJ7Mn4ho7ty5tGHDhgH3Uaf8exkbG9NXX3017uafvbjU9opWV1cXSktL4efnJ5RpaGjAz88PhYWFKoxMeWpra2FpaQkHBweEhYWhoaEBAFBaWoru7m6FsZg6dSpsbGzUdizq6+vR1NSkkPOECRPg7e0t5FxYWAiJRIJZs2YJbfz8/KChoYGioqLnHrMy5OXlYfLkyXBxccHatWvR3Nws1Klb/nfv3gUATJw4EcDQzvvCwkK4ubkpfJFhQEAA7t27J1wVGSuezL/X4cOHYWJighkzZmDr1q3o6OgQ6tQpf5lMhiNHjuD+/fvw8fEZd/PPXlxq+4Wld+7cgUwm6/NNsGZmZvj3v/+toqiUx9vbG6mpqXBxcUFjYyO2b9+OX/7yl7h8+TKampqgra0NiUSisI+ZmRmamppUE7CS9ebV3/z31jU1NWHy5MkK9S+99BImTpyoFuMSGBiIJUuWwN7eHnV1dfjwww8RFBSEwsJCaGpqqlX+crkcsbGxeOONNzBjxgwAGNJ539TU1O850ls3VvSXPwD89re/ha2tLSwtLVFRUYE//OEPqKmpwYkTJwCoR/6VlZXw8fFBZ2cnxGIx0tPT4erqivLy8nEz/+zFprYLrfEmKChI+Nnd3R3e3t6wtbXFN998Az09PRVGxlTl7bffFn52c3ODu7s7Xn75ZeTl5cHX11eFkT170dHRuHz5ssJziePJQPk//rydm5sbLCws4Ovri7q6Orz88svPO0ylcHFxQXl5Oe7evYtvv/0WkZGRyM/PV3VYjAnU9tahiYkJNDU1+7xhcuvWLZibm6soqudHIpHA2dkZV69ehbm5Obq6utDa2qrQRp3Hojevp82/ubl5nxcjenp60NLSopbj4uDgABMTE1y9ehWA+uQfExODjIwM5ObmYsqUKUL5UM57c3Pzfs+R3rqxYKD8++Pt7Q0ACufAWM9fW1sbjo6O8PLyQmJiIjw8PLB79+5xM//sxae2Cy1tbW14eXnh3LlzQplcLse5c+fg4+Ojwsiej/b2dtTV1cHCwgJeXl7Q0tJSGIuamho0NDSo7VjY29vD3NxcIed79+6hqKhIyNnHxwetra0oLS0V2uTk5EAulwu/kNTJf//7XzQ3N8PCwgLA2M+fiBATE4P09HTk5OTA3t5eoX4o572Pjw8qKysVFpzZ2dkwMjKCq6vr80lkhAbLvz/l5eUAoHAOjNX8ByKXy/Hw4UO1n382hqj6aXxlOnLkCOno6FBqaipVV1fT6tWrSSKRKLxhoi42btxIeXl5VF9fTwUFBeTn50cmJiZ0+/ZtIiJas2YN2djYUE5ODkmlUvLx8SEfHx8VRz06bW1tdOnSJbp06RIBoJ07d9KlS5foxo0bRES0Y8cOkkgkdOrUKaqoqKCQkBCyt7enBw8eCH0EBgaSp6cnFRUV0YULF8jJyYmWL1+uqpSG5Wn5t7W10aZNm6iwsJDq6+vpu+++o5kzZ5KTkxN1dnYKfYzl/NeuXUsTJkygvLw8amxsFD4dHR1Cm8HO+56eHpoxYwb5+/tTeXk5ZWZmkqmpKW3dulUVKQ3LYPlfvXqVPv74Y5JKpVRfX0+nTp0iBwcHmjNnjtDHWM6fiGjLli2Un59P9fX1VFFRQVu2bCGRSERZWVlEpN7zz8YOtV5oERHt3buXbGxsSFtbm1577TW6ePGiqkNSitDQULKwsCBtbW2ysrKi0NBQunr1qlD/4MEDWrduHRkbG5O+vj4tXryYGhsbVRjx6OXm5hKAPp/IyEgievQVD9u2bSMzMzPS0dEhX19fqqmpUeijubmZli9fTmKxmIyMjCgqKora2tpUkM3wPS3/jo4O8vf3J1NTU9LS0iJbW1t65513+vyRMZbz7y93AJSSkiK0Gcp5f/36dQoKCiI9PT0yMTGhjRs3Und393POZvgGy7+hoYHmzJlDEydOJB0dHXJ0dKTNmzfT3bt3FfoZq/kTEf3ud78jW1tb0tbWJlNTU/L19RUWWUTqPf9s7BARET2/62eMMcYYY+OH2j6jxRhjjDGmarzQYowxxhhTEl5oMcYYY4wpCS+0GGOMMcaUhBdajDHGGGNKwgstxhhjjDEl4YUWY4wxxpiS8EKLMcYYY0xJeKHF1MKKFSuwaNEilR0/PDwcf/rTn4RtOzs77Nq1S2XxjNST4zhv3jzExsaqLJ5eqampkEgkKo1hLM3paGPNzMzEK6+8Arlc/uyCYmyc4oUWe+GJRKKnfhISErB7926kpqaqJL7vv/8ep0+fxvr164WykpISrF69WiXxvKjy8vIgEonQ2tqq6lCeaqBF3Via0ydjFYlEOHny5JD3DwwMhJaWFg4fPqyE6BgbX15SdQCMDaaxsVH4+ejRo4iLi0NNTY1QJhaLIRaLVREaAGDv3r1YunSpQgympqYqi4f1r6urC9ra2iPefyzN6bOIdcWKFdizZw/Cw8OfQUSMjV98RYu98MzNzYXPhAkTIBKJFMrEYnG/t7zeffddxMbGwtjYGGZmZjhw4ADu37+PqKgoGBoawtHREWfOnFE41uXLlxEUFASxWAwzMzOEh4fjzp07A8Ymk8nw7bffIjg4WKH8yVs3IpEIX331FRYvXgx9fX04OTnhb3/721Pz3rdvH5ycnKCrqwszMzP85je/GVV+MpkMK1euhL29PfT09ODi4oLdu3c/NYYnPXz4EJs2bYKVlRUMDAzg7e2NvLw8of7GjRsIDg6GsbExDAwMMH36dJw+fRrXr1/H/PnzAQDGxsYQiURYsWLFgMdJTU2FjY0N9PX1sXjxYjQ3NyvU93erODY2FvPmzVMYo5iYGMTGxsLExAQBAQEAgJ07d8LNzQ0GBgawtrbGunXr0N7eDuDRVbeoqCjcvXtX4Yop0HdOGxoaEBISArFYDCMjIyxbtgy3bt0S6hMSEvDKK6/g66+/hp2dHSZMmIC3334bbW1tA+bdu8/jdu3aBTs7uz65f/bZZ7CwsMCkSZMQHR2N7u5uoc3jsfbuu3jxYohEImH7+++/x/z582FoaAgjIyN4eXlBKpUKfQQHB0MqlaKurm7AeBljg+OFFlNbBw8ehImJCYqLi/Huu+9i7dq1WLp0KWbPno2ysjL4+/sjPDwcHR0dAIDW1lYsWLAAnp6ekEqlyMzMxK1bt7Bs2bIBj1FRUYG7d+9i1qxZg8azfft2LFu2DBUVFXjzzTcRFhaGlpaWfttKpVKsX78eH3/8MWpqapCZmYk5c+aMKj+5XI4pU6bg2LFjqK6uRlxcHD788EN88803Qx1SxMTEoLCwEEeOHEFFRQWWLl2KwMBA1NbWAgCio6Px8OFDnD9/HpWVlfj0008hFothbW2N48ePAwBqamrQ2Ng44CKvqKgIK1euRExMDMrLyzF//nx88sknQ47xyTHS1tZGQUEB9u/fDwDQ0NDAnj17UFVVhYMHDyInJwcffPABAGD27NnYtWsXjIyM0NjYiMbGRmzatKlPv3K5HCEhIWhpaUF+fj6ys7Nx7do1hIaGKrSrq6vDyZMnkZGRgYyMDOTn52PHjh0jyuVxubm5qKurQ25uLg4ePIjU1NQBb52XlJQAAFJSUtDY2Chsh4WFYcqUKSgpKUFpaSm2bNkCLS0tYT8bGxuYmZnhn//856jjZWxcI8bGkJSUFJowYUKf8sjISAoJCRG2586dS7/4xS+E7Z6eHjIwMKDw8HChrLGxkQBQYWEhERH98Y9/JH9/f4V+b968SQCopqam33jS09NJU1OT5HK5QrmtrS198cUXwjYA+uijj4Tt9vZ2AkBnzpzpt9/jx4+TkZER3bt3r9/6keTXn+joaHrrrbeE7f7GccOGDUREdOPGDdLU1KQffvhBoQ9fX1/aunUrERG5ublRQkJCv8fKzc0lAPTzzz8PGA8R0fLly+nNN99UKAsNDVWY9yfjJCLasGEDzZ07VyF2T0/Ppx6LiOjYsWM0adIkYXugc+zxOc3KyiJNTU1qaGgQ6quqqggAFRcXExFRfHw86evrK8zh5s2bydvbe8BY4uPjycPDQ6Hsiy++IFtbW2E7MjKSbG1tqaenRyhbunQphYaG9hsr0aPzLz09XaFfQ0NDSk1NHTAWIiJPT88B55MxNjR8RYupLXd3d+FnTU1NTJo0CW5ubkKZmZkZAOD27dsAHt1Kyc3NFZ75EovFmDp1KgAMePvkwYMH0NHRgUgkGlY8BgYGMDIyEo79pF/96lewtbWFg4MDwsPDcfjwYeHK1EjzA4Dk5GR4eXnB1NQUYrEYf/3rX9HQ0DBo7ABQWVkJmUwGZ2dnhTHKz88Xxmf9+vX45JNP8MYbbyA+Ph4VFRVD6vtxV65cgbe3t0KZj4/PsPsBAC8vrz5l3333HXx9fWFlZQVDQ0OEh4ejubm5z/gOFqO1tTWsra2FMldXV0gkEly5ckUos7Ozg6GhobBtYWEx4JwPx/Tp06GpqTmqft9//32sWrUKfn5+2LFjR7/nuJ6e3rDGhTHWFy+0mNp6/DYI8Og5qcfLehdHva+wt7e3Izg4GOXl5Qqf2traPrftepmYmKCjowNdXV0jimeg1+cNDQ1RVlaGtLQ0WFhYIC4uDh4eHgpv7A03vyNHjmDTpk1YuXIlsrKyUF5ejqioqCHFDjwaH01NTZSWliqMz5UrV4TbgKtWrcK1a9cQHh6OyspKzJo1C3v37h1S/8OhoaEBIlIoe/wZpV4GBgYK29evX8evf/1ruLu74/jx4ygtLUVycjIADHkchmM4cw4MPa/h9tufhIQEVFVVYeHChcjJyYGrqyvS09MV2rS0tIyplwAYexHxQoux/5k5cyaqqqpgZ2cHR0dHhc+Tv7B79T64XF1d/czjeemll+Dn54ekpCRUVFTg+vXryMnJGXF/BQUFmD17NtatWwdPT084OjoO60FnT09PyGQy3L59u8/4mJubC+2sra2xZs0anDhxAhs3bsSBAwcAQHjjTyaTPfU406ZNQ1FRkULZxYsXFbZNTU0V3kYFgPLy8kFzKC0thVwux+eff47XX38dzs7O+PHHHxXaaGtrDynGmzdv4ubNm0JZdXU1Wltb4erqOmgcAzE1NUVTU5PCYmsoeQ1GS0ur35ycnZ3x3nvvISsrC0uWLEFKSopQ19nZibq6Onh6eo76+IyNZ7zQYux/oqOj0dLSguXLl6OkpAR1dXU4e/YsoqKiBvzFa2pqipkzZ+LChQvPNJaMjAzs2bMH5eXluHHjBg4dOgS5XA4XF5cR9+nk5ASpVIqzZ8/iP//5D7Zt2yY8GD0Uzs7OCAsLQ0REBE6cOIH6+noUFxcjMTER//jHPwA8evPv7NmzqK+vR1lZGXJzczFt2jQAgK2tLUQiETIyMvDTTz8Jb/o9af369cjMzMRnn32G2tpa/OUvf0FmZqZCmwULFkAqleLQoUOora1FfHw8Ll++PGgOjo6O6O7uxt69e3Ht2jV8/fXXwkPyvezs7NDe3o5z587hzp07/d468/Pzg5ubG8LCwlBWVobi4mJERERg7ty5Q3oxYiDz5s3DTz/9hKSkJNTV1SE5ObnPm7EjYWdnh3PnzqGpqQk///wzHjx4gJiYGOTl5eHGjRsoKChASUmJMFfAo8Wtjo7OiG/bMsYe4YUWY/9jaWmJgoICyGQy+Pv7w83NDbGxsZBIJNDQGPifyqpVq575FztKJBKcOHECCxYswLRp07B//36kpaVh+vTpI+7z97//PZYsWYLQ0FB4e3ujubkZ69atG1YfKSkpiIiIwMaNG+Hi4oJFixahpKQENjY2AB5drYqOjsa0adMQGBgIZ2dn7Nu3DwBgZWWF7du3Y8uWLTAzM0NMTEy/x3j99ddx4MAB7N69Gx4eHsjKysJHH32k0CYgIADbtm3DBx98gFdffRVtbW2IiIgYNH4PDw/s3LkTn376KWbMmIHDhw8jMTFRoc3s2bOxZs0ahIaGwtTUFElJSX36EYlEOHXqFIyNjTFnzhz4+fnBwcEBR48eHdI4DmTatGnYt28fkpOT4eHhgeLi4n7fehyuzz//HNnZ2bC2toanpyc0NTXR3NyMiIgIODs7Y9myZQgKCsL27duFfdLS0hAWFgZ9ff1RH5+x8UxETz4QwBgblgcPHsDFxQVHjx7lv/6ZWrhz5w5cXFwglUphb2+v6nAYG9P4ihZjo6Snp4dDhw499YtNGRtLrl+/jn379vEii7FngK9oMcYYY4wpCV/RYowxxhhTEl5oMcYYY4wpCS+0GGOMMcaUhBdajDHGGGNKwgstxhhjjDEl4YUWY4wxxpiS8EKLMcYYY0xJeKHFGGOMMaYkvNBijDHGGFMSXmgxxhhjjCnJ/wEfVYvWu5MoOAAAAABJRU5ErkJggg==",
|
28 |
+
"text/plain": [
|
29 |
+
"<Figure size 640x480 with 2 Axes>"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"metadata": {},
|
33 |
+
"output_type": "display_data"
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"source": [
|
37 |
+
"import numpy as np\n",
|
38 |
+
"\n",
|
39 |
+
"# Load the binary matrix from the file\n",
|
40 |
+
"binary_matrix = np.load('binary_image_1.npy')\n",
|
41 |
+
"\n",
|
42 |
+
"# Now you can use binary_matrix as a regular NumPy array\n",
|
43 |
+
"# For instance, you can print its shape or its content\n",
|
44 |
+
"print(f'Shape of loaded binary matrix: {binary_matrix.shape}')\n",
|
45 |
+
"print(binary_matrix)\n",
|
46 |
+
"\n",
|
47 |
+
"# You can also perform any operations on the matrix\n",
|
48 |
+
"# For example, let's find the sum of all elements (which will give us the total number of notes on)\n",
|
49 |
+
"total_notes_on = np.sum(binary_matrix)\n",
|
50 |
+
"print(f'Total number of notes on: {total_notes_on}')\n",
|
51 |
+
"\n",
|
52 |
+
"\n",
|
53 |
+
"# Or you could use it as part of a function, for example to calculate the density of notes\n",
|
54 |
+
"def note_density(binary_matrix):\n",
|
55 |
+
" return np.sum(binary_matrix) / np.size(binary_matrix)\n",
|
56 |
+
"\n",
|
57 |
+
"density = note_density(binary_matrix)\n",
|
58 |
+
"print(f'Note density: {density}')\n",
|
59 |
+
"\n",
|
60 |
+
"# And you can use it in plotting or any further analysis\n",
|
61 |
+
"# Example: Visualizing the transposed matrix using matplotlib\n",
|
62 |
+
"import matplotlib.pyplot as plt\n",
|
63 |
+
"\n",
|
64 |
+
"plt.imshow(binary_matrix, aspect='auto', origin='lower', cmap='gray_r')\n",
|
65 |
+
"plt.ylabel('MIDI Number')\n",
|
66 |
+
"plt.xlabel('Time (in smallest duration units)')\n",
|
67 |
+
"plt.title('Binary Matrix Representation of Piano Roll')\n",
|
68 |
+
"plt.colorbar(label='Note On/Off', ticks=[0, 1])\n",
|
69 |
+
"plt.tight_layout()\n",
|
70 |
+
"plt.show()\n"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 40,
|
76 |
+
"id": "ad49cd4b-8a57-48a1-941c-f04a51667041",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"import numpy as np\n",
|
81 |
+
"import mido\n",
|
82 |
+
"from mido import MidiFile, MidiTrack, Message\n",
|
83 |
+
"\n",
|
84 |
+
"# Define the smallest duration unit in milliseconds (e.g., 100ms)\n",
|
85 |
+
"smallest_duration_ms = 400\n",
|
86 |
+
"\n",
|
87 |
+
"# Define the lowest pitch as MIDI note number (e.g., 21 for a standard piano's lowest A)\n",
|
88 |
+
"lowest_midi_pitch = 51\n",
|
89 |
+
"\n",
|
90 |
+
"# Create a new MIDI file with one track\n",
|
91 |
+
"mid = MidiFile()\n",
|
92 |
+
"track = MidiTrack()\n",
|
93 |
+
"mid.tracks.append(track)\n",
|
94 |
+
"\n",
|
95 |
+
"# Add tempo meta message to the track (500000 is the default tempo for mido, which is 120 bpm)\n",
|
96 |
+
"track.append(mido.MetaMessage('set_tempo', tempo=500000))\n",
|
97 |
+
"\n",
|
98 |
+
"# Initialize an array to keep track of the state (on/off) of each note\n",
|
99 |
+
"note_states = np.zeros(binary_matrix.shape[0], dtype=int)\n",
|
100 |
+
"# Calculate time in ticks for the smallest duration unit\n",
|
101 |
+
"time_in_ticks = mido.second2tick(smallest_duration_ms / 1000, mid.ticks_per_beat, mido.bpm2tempo(120))\n",
|
102 |
+
"\n",
|
103 |
+
"# Initialize a variable to keep track of the time since the last event\n",
|
104 |
+
"time_since_last_event = 0\n",
|
105 |
+
"\n",
|
106 |
+
"# Iterate over the columns/time steps of the binary matrix\n",
|
107 |
+
"for col_index in range(binary_matrix.shape[1]):\n",
|
108 |
+
" # Iterate over each row/note in the column\n",
|
109 |
+
" for row_index, value in enumerate(binary_matrix[:, col_index]):\n",
|
110 |
+
" note = lowest_midi_pitch + row_index\n",
|
111 |
+
" if value == 1 and note_states[row_index] == 0:\n",
|
112 |
+
" # Note on\n",
|
113 |
+
" track.append(Message('note_on', note=note, velocity=64, time=int(time_since_last_event)))\n",
|
114 |
+
" note_states[row_index] = 1\n",
|
115 |
+
" time_since_last_event = 0\n",
|
116 |
+
" elif value == 0 and note_states[row_index] == 1:\n",
|
117 |
+
" # Note off\n",
|
118 |
+
" track.append(Message('note_off', note=note, velocity=64, time=int(time_since_last_event)))\n",
|
119 |
+
" note_states[row_index] = 0\n",
|
120 |
+
" time_since_last_event = 0\n",
|
121 |
+
"\n",
|
122 |
+
" # Increment time since the last event\n",
|
123 |
+
" time_since_last_event += time_in_ticks\n",
|
124 |
+
"\n",
|
125 |
+
"# Turn off any notes that are still on\n",
|
126 |
+
"for row_index, state in enumerate(note_states):\n",
|
127 |
+
" if state == 1:\n",
|
128 |
+
" note = lowest_midi_pitch + row_index\n",
|
129 |
+
" track.append(Message('note_off', note=note, velocity=64, time=int(time_since_last_event)))\n",
|
130 |
+
"\n",
|
131 |
+
"# Save the MIDI file\n",
|
132 |
+
"mid.save('output_14.mid')\n"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": null,
|
138 |
+
"id": "5bc695b2-0260-452d-b108-3d7bf98aa5e7",
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [],
|
141 |
+
"source": []
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"id": "e763fad4-7219-4d26-9cf8-11463521e8a5",
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [],
|
149 |
+
"source": []
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"metadata": {
|
153 |
+
"kernelspec": {
|
154 |
+
"display_name": "Python 3 (ipykernel)",
|
155 |
+
"language": "python",
|
156 |
+
"name": "python3"
|
157 |
+
},
|
158 |
+
"language_info": {
|
159 |
+
"codemirror_mode": {
|
160 |
+
"name": "ipython",
|
161 |
+
"version": 3
|
162 |
+
},
|
163 |
+
"file_extension": ".py",
|
164 |
+
"mimetype": "text/x-python",
|
165 |
+
"name": "python",
|
166 |
+
"nbconvert_exporter": "python",
|
167 |
+
"pygments_lexer": "ipython3",
|
168 |
+
"version": "3.11.6"
|
169 |
+
}
|
170 |
+
},
|
171 |
+
"nbformat": 4,
|
172 |
+
"nbformat_minor": 5
|
173 |
+
}
|