|
import inspect |
|
|
|
import os |
|
import os.path as osp |
|
import shutil |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import repo_exists, snapshot_download |
|
from huggingface_hub.utils import HFValidationError, validate_repo_id |
|
|
|
|
|
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM, |
|
AutoTokenizer, BitsAndBytesConfig, GenerationConfig, |
|
LlamaConfig, LlamaForCausalLM, PretrainedConfig, |
|
PreTrainedModel, SiglipImageProcessor, |
|
SiglipVisionModel) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_llava import LlavaConfig |
|
|
|
from .utils import get_model_config |
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30 |
|
WORKER_HEART_BEAT_INTERVAL = 15 |
|
|
|
LOGDIR = "." |
|
|
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
IMAGE_PLACEHOLDER = "<image-placeholder>" |
|
|
|
def is_deepspeed_zero3_enabled(): |
|
return None |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import (AutoConfig, AutoModel, PretrainedConfig, |
|
PreTrainedModel) |
|
|
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": "identity"} |
|
|
|
|
|
class SimpleResBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.pre_norm = nn.LayerNorm(channels) |
|
|
|
self.proj = nn.Sequential( |
|
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.pre_norm(x) |
|
return x + self.proj(x) |
|
|
|
|
|
class DownSampleBlock(nn.Module): |
|
def forward(self, x): |
|
vit_embeds = x |
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = self.flat_square(vit_embeds) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
return vit_embeds |
|
|
|
def flat_square(self, x): |
|
n, w, h, c = x.size() |
|
if w % 2 == 1: |
|
x = torch.concat( |
|
[x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1 |
|
).contiguous() |
|
n, w, h, c = x.size() |
|
if h % 2 == 1: |
|
x = torch.concat( |
|
[x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2 |
|
).contiguous() |
|
n, w, h, c = x.size() |
|
x = x.view(n, w, int(h / 2), int(c * 2)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
x = x.view(n, int(h / 2), int(w / 2), int(c * 4)) |
|
return x |
|
|
|
|
|
class MultimodalProjectorConfig(PretrainedConfig): |
|
model_type = "v2l_projector" |
|
|
|
def __init__(self, mm_projector_type: str = None, **kwargs): |
|
super().__init__() |
|
self.mm_projector_type = mm_projector_type |
|
|
|
|
|
class MultimodalProjector(PreTrainedModel): |
|
config_class = MultimodalProjectorConfig |
|
|
|
def __init__( |
|
self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig |
|
): |
|
super().__init__(mm_projector_cfg) |
|
mm_projector_type = mm_projector_cfg.mm_projector_type |
|
if mm_projector_type == "identity": |
|
self.layers = IdentityMap() |
|
elif mm_projector_type == "linear": |
|
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
elif mm_projector_type == "mlp_downsample": |
|
self.layers = nn.Sequential( |
|
DownSampleBlock(), |
|
nn.LayerNorm(config.mm_hidden_size * 4), |
|
nn.Linear(config.mm_hidden_size * 4, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
) |
|
else: |
|
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
self.layers = nn.Sequential(*modules) |
|
else: |
|
raise ValueError(f"Unknown projector type: {mm_projector_type}") |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return self.layers(x) |
|
|
|
|
|
def build_mm_projector( |
|
model_type_or_path: str, config: PretrainedConfig |
|
) -> PreTrainedModel: |
|
if model_type_or_path is None: |
|
return None |
|
|
|
|
|
if config.resume_path: |
|
assert os.path.exists( |
|
model_type_or_path |
|
), f"Resume mm projector path {model_type_or_path} does not exist!" |
|
return MultimodalProjector.from_pretrained( |
|
model_type_or_path, config, torch_dtype=eval(config.model_dtype) |
|
) |
|
|
|
else: |
|
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path) |
|
mm_projector = MultimodalProjector(mm_projector_cfg, config).to( |
|
eval(config.model_dtype) |
|
) |
|
return mm_projector |
|
|
|
|
|
class VisionTower(nn.Module): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
self.vision_tower_name = vision_tower |
|
self.select_layer = getattr(args, "mm_vision_select_layer", -2) |
|
self.select_feature = getattr(args, "mm_vision_select_feature", "patch") |
|
|
|
self.cfg_only = None |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
if self.select_feature == "patch": |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == "cls_patch": |
|
image_features = image_features |
|
else: |
|
raise ValueError(f"Unexpected select feature: {self.select_feature}") |
|
return image_features |
|
|
|
def _maybe_resize_pos_embeds( |
|
self, |
|
model: PreTrainedModel, |
|
image_processor, |
|
resolution: int = -1, |
|
interpolate_mode: str = "linear", |
|
): |
|
if resolution in [model.config.image_size, -1]: |
|
return |
|
print( |
|
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..." |
|
) |
|
embeddings = model.vision_model.embeddings |
|
patch_size = embeddings.patch_size |
|
num_new_tokens = int((resolution // patch_size) ** 2) |
|
|
|
old_embeddings = embeddings.position_embedding |
|
match interpolate_mode: |
|
case "linear": |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
old_num_tokens, old_embedding_dim = old_embeddings.weight.size() |
|
new_embeddings = nn.Embedding( |
|
num_new_tokens, |
|
old_embedding_dim, |
|
dtype=old_embeddings.weight.dtype, |
|
device=old_embeddings.weight.device, |
|
) |
|
mapped_indices = ( |
|
torch.arange(num_new_tokens).to(old_embeddings.weight.device) |
|
/ (num_new_tokens - 1) |
|
* (old_num_tokens - 1) |
|
) |
|
floor_indices = torch.clamp( |
|
mapped_indices.floor().long(), min=0, max=old_num_tokens - 1 |
|
) |
|
ceil_indices = torch.clamp( |
|
mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1 |
|
) |
|
if is_deepspeed_zero3_enabled(): |
|
params = [old_embeddings.weight, new_embeddings.weight] |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
interpolated_embeds = (mapped_indices - floor_indices)[ |
|
:, None |
|
] * old_embeddings.weight.data[ceil_indices, :] + ( |
|
ceil_indices - mapped_indices |
|
)[ |
|
:, None |
|
] * old_embeddings.weight.data[ |
|
floor_indices, : |
|
] |
|
else: |
|
interpolated_embeds = (mapped_indices - floor_indices)[ |
|
:, None |
|
] * old_embeddings.weight.data[ceil_indices, :] + ( |
|
ceil_indices - mapped_indices |
|
)[ |
|
:, None |
|
] * old_embeddings.weight.data[ |
|
floor_indices, : |
|
] |
|
new_embeddings.weight.data = interpolated_embeds |
|
case _: |
|
raise NotImplementedError |
|
|
|
if hasattr(old_embeddings, "_hf_hook"): |
|
hook = old_embeddings._hf_hook |
|
|
|
|
|
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad) |
|
|
|
model.config.image_size = resolution |
|
if hasattr(image_processor, "crop_size"): |
|
|
|
image_processor.crop_size = resolution |
|
else: |
|
|
|
assert hasattr(image_processor, "size") |
|
image_processor.size = {"height": resolution, "width": resolution} |
|
|
|
embeddings.position_embedding = new_embeddings |
|
embeddings.image_size = resolution |
|
embeddings.num_patches = embeddings.num_positions = num_new_tokens |
|
embeddings.position_ids = ( |
|
torch.arange(embeddings.num_positions) |
|
.expand((1, -1)) |
|
.to(old_embeddings.weight.device) |
|
) |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower( |
|
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), |
|
output_hidden_states=True, |
|
) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower( |
|
images.to(device=self.device, dtype=self.dtype), |
|
output_hidden_states=True, |
|
) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
|
|
class SiglipVisionTower(VisionTower): |
|
def __init__( |
|
self, model_name_or_path: str, config: PretrainedConfig, state_dict=None |
|
): |
|
super().__init__(model_name_or_path, config) |
|
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) |
|
self.vision_tower = SiglipVisionModel.from_pretrained( |
|
|
|
model_name_or_path, |
|
torch_dtype=eval(config.model_dtype), |
|
state_dict=state_dict, |
|
) |
|
self.is_loaded = True |
|
|
|
|
|
|
|
def build_vision_tower( |
|
model_name_or_path: str, config: PretrainedConfig |
|
) -> PreTrainedModel: |
|
|
|
if model_name_or_path is None: |
|
return None |
|
|
|
vision_tower_arch = None |
|
if config.resume_path and "radio" not in model_name_or_path: |
|
assert os.path.exists( |
|
model_name_or_path |
|
), f"Resume vision tower path {model_name_or_path} does not exist!" |
|
vision_tower_cfg = AutoConfig.from_pretrained( |
|
model_name_or_path, trust_remote_code=True |
|
) |
|
vision_tower_arch = vision_tower_cfg.architectures[0].lower() |
|
vision_tower_name = ( |
|
vision_tower_arch if vision_tower_arch is not None else model_name_or_path |
|
) |
|
|
|
use_s2 = getattr(config, "s2", False) |
|
|
|
if "siglip" in vision_tower_name: |
|
if use_s2: |
|
vision_tower = SiglipVisionTowerS2(model_name_or_path, config) |
|
else: |
|
vision_tower = SiglipVisionTower(model_name_or_path, config) |
|
else: |
|
raise ValueError(f"Unknown vision tower: {model_name_or_path}") |
|
|
|
config.mm_hidden_size = ( |
|
vision_tower.config.hidden_size if not use_s2 else vision_tower.hidden_size |
|
) |
|
return vision_tower |
|
|
|
|
|
|
|
def has_tokenizer(repo_id_or_path: str) -> bool: |
|
|
|
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")): |
|
return True |
|
|
|
|
|
try: |
|
return repo_exists(repo_id_or_path) and file_exists( |
|
repo_id_or_path, "tokenizer_config.json" |
|
) |
|
except HFValidationError: |
|
return False |
|
|
|
|
|
def context_length_extension(config): |
|
orig_ctx_len = getattr(config, "max_position_embeddings", None) |
|
model_max_length = getattr(config, "model_max_length", None) |
|
if orig_ctx_len and model_max_length > orig_ctx_len: |
|
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}") |
|
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len)) |
|
config.rope_scaling = {"type": "linear", "factor": scaling_factor} |
|
return config |
|
|
|
|
|
def build_llm_and_tokenizer( |
|
model_name_or_path: str, |
|
config: PretrainedConfig, |
|
attn_implementation=None, |
|
model_max_length=None, |
|
*args, |
|
**kwargs, |
|
): |
|
llm_cfg = AutoConfig.from_pretrained(model_name_or_path) |
|
llm_cfg._attn_implementation = attn_implementation |
|
llm_cfg.model_max_length = model_max_length |
|
if model_max_length is not None: |
|
context_length_extension(llm_cfg) |
|
|
|
llm = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
config=llm_cfg, |
|
torch_dtype=eval(config.model_dtype), |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
|
|
llm_path = model_name_or_path |
|
if not has_tokenizer(llm_path): |
|
llm_path = osp.join(llm_path, "llm") |
|
if not has_tokenizer(llm_path): |
|
raise ValueError(f"Cannot find tokenizer in {llm_path}.") |
|
|
|
|
|
try: |
|
llm_arch = getattr(llm_cfg, "architectures")[0].lower() |
|
except BaseException: |
|
warnings.warn( |
|
f'Cannot find LLM architecture, please check the "config.json" under "{llm_path}".' |
|
) |
|
|
|
if "mpt" in llm_arch: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
llm_path, |
|
model_max_length=llm_cfg.model_max_length, |
|
padding_side="right", |
|
) |
|
elif "yi" in llm_path or ( |
|
getattr(llm_cfg, "num_hidden_layers", -1) == 60 |
|
and getattr(llm_cfg, "num_attention_heads", -1) == 56 |
|
): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
llm_path, |
|
model_max_length=llm_cfg.model_max_length, |
|
padding_side="right", |
|
use_fast=False, |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
llm_path, |
|
model_max_length=llm_cfg.model_max_length, |
|
padding_side="right", |
|
use_fast=False, |
|
legacy=False, |
|
) |
|
|
|
|
|
config.hidden_size = llm.config.hidden_size |
|
return llm, tokenizer |
|
|
|
|
|
def is_mm_model(model_path): |
|
""" |
|
Check if the model at the given path is a visual language model. |
|
|
|
Args: |
|
model_path (str): The path to the model. |
|
|
|
Returns: |
|
bool: True if the model is an MM model, False otherwise. |
|
""" |
|
config = AutoConfig.from_pretrained(model_path) |
|
architectures = config.architectures |
|
for architecture in architectures: |
|
if "llava" in architecture.lower(): |
|
return True |
|
return False |
|
|
|
|
|
def load_pretrained_model( |
|
model_path, |
|
model_name, |
|
model_base=None, |
|
load_8bit=False, |
|
load_4bit=False, |
|
device_map="auto", |
|
device="cuda", |
|
**kwargs, |
|
): |
|
kwargs = {"device_map": device_map, **kwargs} |
|
|
|
if device != "cuda": |
|
kwargs["device_map"] = {"": device} |
|
|
|
if load_8bit: |
|
kwargs["load_in_8bit"] = True |
|
elif load_4bit: |
|
kwargs["load_in_4bit"] = True |
|
kwargs["quantization_config"] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
) |
|
else: |
|
kwargs["torch_dtype"] = torch.float16 |
|
|
|
|
|
if is_mm_model(model_path): |
|
|
|
|
|
if "lora" in model_name.lower() and model_base is None: |
|
warnings.warn( |
|
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." |
|
) |
|
if ( |
|
"lora" in model_name.lower() or "dora" in model_name.lower() |
|
) and model_base is not None: |
|
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
print(lora_cfg_pretrained) |
|
print("Loading LLaVA from base model...") |
|
config = AutoConfig.from_pretrained(model_base) |
|
prepare_config_for_eval(config, kwargs) |
|
model = LlavaLlamaModel.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, config=config, **kwargs |
|
) |
|
tokenizer = model.tokenizer |
|
token_num, tokem_dim = ( |
|
model.llm.lm_head.out_features, |
|
model.llm.lm_head.in_features, |
|
) |
|
if model.llm.lm_head.weight.shape[0] != token_num: |
|
model.llm.lm_head.weight = torch.nn.Parameter( |
|
torch.empty( |
|
token_num, tokem_dim, device=model.device, dtype=model.dtype |
|
) |
|
) |
|
model.llm.embed_tokens.weight = torch.nn.Parameter( |
|
torch.empty( |
|
token_num, tokem_dim, device=model.device, dtype=model.dtype |
|
) |
|
) |
|
|
|
print("Loading additional LLaVA weights...") |
|
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): |
|
non_lora_trainables = torch.load( |
|
os.path.join(model_path, "non_lora_trainables.bin"), |
|
map_location="cpu", |
|
) |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download( |
|
repo_id=repo_id, filename=filename, subfolder=subfolder |
|
) |
|
return torch.load(cache_file, map_location="cpu") |
|
|
|
non_lora_trainables = load_from_hf( |
|
model_path, "non_lora_trainables.bin" |
|
) |
|
non_lora_trainables = { |
|
(k[11:] if k.startswith("base_model.") else k): v |
|
for k, v in non_lora_trainables.items() |
|
} |
|
if any(k.startswith("model.model.") for k in non_lora_trainables): |
|
non_lora_trainables = { |
|
(k[6:] if k.startswith("model.") else k): v |
|
for k, v in non_lora_trainables.items() |
|
} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
|
|
print("Loading LoRA weights...") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print("Merging LoRA weights...") |
|
model = model.merge_and_unload() |
|
print("Model is loaded...") |
|
|
|
elif model_base is not None: |
|
|
|
print("Loading LLaVA from base model...") |
|
cfg_pretrained = AutoConfig.from_pretrained( |
|
model_path, trust_remote_code=True |
|
) |
|
mm_config_wrapper(config, kwargs) |
|
if "mpt" in model_name.lower(): |
|
if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")): |
|
shutil.copyfile( |
|
os.path.join(model_base, "configuration_mpt.py"), |
|
os.path.join(model_path, "configuration_mpt.py"), |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) |
|
model = LlavaMPTForCausalLM.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_base, use_fast=False, legacy=False |
|
) |
|
model = LlavaLlamaForCausalLM.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs |
|
) |
|
else: |
|
config = AutoConfig.from_pretrained(model_path) |
|
config.resume_path = model_path |
|
prepare_config_for_eval(config, kwargs) |
|
if "mpt" in model_name.lower(): |
|
model = LlavaMPTForCausalLM.from_pretrained( |
|
model_path, config=config, low_cpu_mem_usage=True, **kwargs |
|
) |
|
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower(): |
|
model = LlavaMistralForCausalLM.from_pretrained( |
|
model_path, config=config, low_cpu_mem_usage=True, **kwargs |
|
) |
|
elif "gemma" in model_name.lower(): |
|
model = LlavaGemmaForCausalLM.from_pretrained( |
|
model_path, config=config, low_cpu_mem_usage=True, **kwargs |
|
) |
|
else: |
|
|
|
|
|
model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs) |
|
tokenizer = model.tokenizer |
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, **kwargs |
|
) |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print("Convert to FP16...") |
|
model.to(torch.float16) |
|
else: |
|
if "mpt" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=False, legacy=False |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, **kwargs |
|
) |
|
model.eval() |
|
image_processor = None |
|
if is_mm_model(model_path): |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens( |
|
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True |
|
) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
vision_tower = model.get_vision_tower() |
|
vision_tower.to(device=device, dtype=torch.float16) |
|
|
|
mm_projector = model.get_mm_projector() |
|
mm_projector.to(device=device, dtype=torch.float16) |
|
|
|
image_processor = vision_tower.image_processor |
|
|
|
if hasattr(model.llm.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |
|
|
|
|
|
def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"): |
|
target_model = f"{model_name}{suffix}" |
|
target_cfg = getattr(config, target_model, None) |
|
|
|
if isinstance(target_cfg, str): |
|
return target_cfg |
|
elif isinstance(target_cfg, dict): |
|
return target_cfg["architectures"][0] |
|
else: |
|
raise ValueError(f"Invalid {target_model} configuration!") |
|
|
|
|
|
def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict): |
|
try: |
|
|
|
if getattr(config, "vision_tower_cfg", None) is None: |
|
config.vision_tower_cfg = config.mm_vision_tower |
|
except AttributeError: |
|
raise ValueError( |
|
f"Invalid configuration! Cannot find vision_tower in config:\n{config}" |
|
) |
|
|
|
config.model_dtype = kwargs.pop("torch_dtype").__str__() |
|
|
|
vision_tower_name = parse_model_name_or_path(config, "vision_tower") |
|
if "siglip" in vision_tower_name.lower(): |
|
kwargs["device_map"] = "cuda" |
|
|
|
|
|
class LlavaLlamaConfig(LlavaConfig): |
|
model_type = "llava_llama" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
from collections import OrderedDict |
|
|
|
|
|
class LlavaMetaModel(ABC): |
|
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs): |
|
|
|
if ( |
|
hasattr(self, "llm") |
|
or hasattr(self, "vision_tower") |
|
or hasattr(self, "mm_projector") |
|
): |
|
|
|
return |
|
|
|
model_dtype = getattr(config, "model_dtype", "torch.float16") |
|
if not hasattr(config, "model_dtype"): |
|
warnings.warn( |
|
"model_dtype not found in config, defaulting to torch.float16." |
|
) |
|
config.model_dtype = model_dtype |
|
|
|
cfgs = get_model_config(config) |
|
if len(cfgs) == 3: |
|
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs |
|
else: |
|
raise ValueError( |
|
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config." |
|
) |
|
|
|
self.llm, self.tokenizer = build_llm_and_tokenizer( |
|
llm_cfg, config, *args, **kwargs |
|
) |
|
self.vision_tower = build_vision_tower(vision_tower_cfg, config) |
|
self.mm_projector = build_mm_projector(mm_projector_cfg, config) |
|
|
|
self.post_config() |
|
self.is_loaded = True |
|
|
|
assert ( |
|
self.llm is not None |
|
or self.vision_tower is not None |
|
or self.mm_projector is not None |
|
), "At least one of the components must be instantiated." |
|
|
|
@classmethod |
|
def load_from_config(cls, model_path_or_config, *args, **kwargs): |
|
pass |
|
|
|
|
|
@classmethod |
|
def load_pretrained(cls, model_path_or_config, *args, **kwargs): |
|
kwargs.pop("config", None) |
|
|
|
if isinstance(model_path_or_config, str): |
|
config = AutoConfig.from_pretrained(model_path_or_config) |
|
elif isinstance(model_path_or_config, LlavaConfig): |
|
config = model_path_or_config |
|
else: |
|
raise NotImplementedError( |
|
f"wrong type, {type(model_path_or_config)} \ |
|
{isinstance(model_path_or_config, LlavaConfig)}" |
|
) |
|
|
|
model_dtype = getattr(config, "model_dtype", "torch.float16") |
|
if not hasattr(config, "model_dtype"): |
|
warnings.warn( |
|
"model_dtype not found in config, defaulting to torch.float16." |
|
) |
|
config.model_dtype = model_dtype |
|
|
|
cfgs = get_model_config(config) |
|
if len(cfgs) == 3: |
|
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs |
|
else: |
|
raise ValueError( |
|
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config." |
|
) |
|
|
|
vlm = cls(config, *args, **kwargs) |
|
|
|
|
|
if ( |
|
hasattr(vlm, "llm") |
|
or hasattr(vlm, "vision_tower") |
|
or hasattr(vlm, "mm_projector") |
|
): |
|
if vlm.is_loaded: |
|
return vlm |
|
|
|
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer( |
|
llm_cfg, config, *args, **kwargs |
|
) |
|
vlm.vision_tower = build_vision_tower(vision_tower_cfg, config) |
|
vlm.mm_projector = build_mm_projector(mm_projector_cfg, config) |
|
|
|
cls.post_config() |
|
cls.is_loaded = True |
|
|
|
|
|
assert ( |
|
vlm.llm is not None |
|
or vlm.vision_tower is not None |
|
or vlm.mm_projector is not None |
|
), "At least one of the components must be instantiated." |
|
return vlm |
|
|
|
|
|
def save_pretrained(self, output_dir, state_dict=None): |
|
if state_dict is None: |
|
|
|
|
|
state_dict = self.state_dict() |
|
|
|
if getattr(self, "tokenizer", None): |
|
self.tokenizer.save_pretrained(osp.join(output_dir, "llm")) |
|
|
|
if self.get_llm(): |
|
print(f"saving llm to {osp.join(output_dir, 'llm')}") |
|
self.llm.config._name_or_path = osp.join(output_dir, "llm") |
|
llm_state_dict = OrderedDict( |
|
{k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k} |
|
) |
|
self.llm.save_pretrained( |
|
os.path.join(output_dir, "llm"), state_dict=llm_state_dict |
|
) |
|
self.config.llm_cfg = self.llm.config |
|
|
|
if self.get_vision_tower(): |
|
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}") |
|
self.vision_tower.config._name_or_path = osp.join( |
|
output_dir, "vision_tower" |
|
) |
|
vision_tower_state_dict = OrderedDict( |
|
{ |
|
k.split("vision_tower.vision_tower.")[-1]: v |
|
for k, v in state_dict.items() |
|
if "vision_tower" in k |
|
} |
|
) |
|
self.vision_tower.vision_tower.save_pretrained( |
|
os.path.join(output_dir, "vision_tower"), |
|
state_dict=vision_tower_state_dict, |
|
) |
|
self.vision_tower.image_processor.save_pretrained( |
|
os.path.join(output_dir, "vision_tower") |
|
) |
|
self.config.vision_tower_cfg = self.vision_tower.config |
|
if hasattr(self.config.vision_tower_cfg, "auto_map"): |
|
if "radio" not in self.get_vision_tower().__class__.__name__.lower(): |
|
delattr(self.config.vision_tower_cfg, "auto_map") |
|
|
|
if self.get_mm_projector(): |
|
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}") |
|
self.mm_projector.config._name_or_path = osp.join( |
|
output_dir, "mm_projector" |
|
) |
|
mm_projector_state_dict = OrderedDict( |
|
{ |
|
k.split("mm_projector.")[-1]: v |
|
for k, v in state_dict.items() |
|
if "mm_projector" in k |
|
} |
|
) |
|
self.mm_projector.save_pretrained( |
|
os.path.join(output_dir, "mm_projector"), |
|
state_dict=mm_projector_state_dict, |
|
) |
|
self.config.mm_projector_cfg = self.mm_projector.config |
|
|
|
self.config._name_or_path = output_dir |
|
self.config.architectures = [self.__class__.__name__] |
|
self.config.save_pretrained(output_dir) |
|
|
|
def get_llm(self): |
|
llm = getattr(self, "llm", None) |
|
if type(llm) is list: |
|
llm = llm[0] |
|
return llm |
|
|
|
def get_lm_head(self): |
|
lm_head = getattr(self.get_llm(), "lm_head", None) |
|
return lm_head |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, "vision_tower", None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def get_mm_projector(self): |
|
mm_projector = getattr(self, "mm_projector", None) |
|
if type(mm_projector) is list: |
|
mm_projector = mm_projector[0] |
|
return mm_projector |
|
|
|
def post_config(self): |
|
self.training = self.get_llm().training |
|
|
|
if getattr(self.config, "llm_cfg", None) is None: |
|
self.config.llm_cfg = self.llm.config |
|
if getattr(self.config, "vision_tower_cfg", None) is None: |
|
self.config.vision_tower_cfg = self.vision_tower.config |
|
if getattr(self.config, "mm_projector_cfg", None) is None: |
|
self.config.mm_projector_cfg = self.mm_projector.config |
|
|
|
def freezed_module_patch(self): |
|
""" |
|
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules. |
|
""" |
|
if self.training: |
|
if self.get_llm() and not getattr( |
|
self.config, "tune_language_model", False |
|
): |
|
pass |
|
|
|
if self.get_vision_tower() and not getattr( |
|
self.config, "tune_vision_tower", False |
|
): |
|
self.get_vision_tower().eval() |
|
if self.get_mm_projector() and not getattr( |
|
self.config, "tune_mm_projector", False |
|
): |
|
self.get_mm_projector().eval() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_vision_tower()(images) |
|
image_features = self.get_mm_projector()(image_features) |
|
return image_features |
|
|
|
|
|
|
|
def _temporary_reorder_cache(self, past_key_values, sorted_idx): |
|
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx) |
|
|
|
def get_input_embeddings(self): |
|
return self.get_llm().get_input_embeddings() |
|
|
|
def get_output_embeddings(self): |
|
return self.get_llm().get_output_embeddings() |
|
|
|
def resize_token_embeddings(self, embed_size): |
|
self.get_llm().resize_token_embeddings(embed_size) |
|
|
|
|
|
|
|
class LlavaLlamaModel(LlavaMetaModel, PreTrainedModel): |
|
config_class = LlavaLlamaConfig |
|
main_input_name = "input_embeds" |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: |
|
super().__init__(config) |
|
return self.init_vlm(config=config, *args, **kwargs) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: bool = None, |
|
**kwargs, |
|
): |
|
if hasattr(cls, "load_pretrained"): |
|
return cls.load_pretrained( |
|
pretrained_model_name_or_path, |
|
*model_args, |
|
config=config, |
|
cache_dir=cache_dir, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
force_download=force_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
use_safetensors=use_safetensors, |
|
**kwargs, |
|
) |
|
return super(LlavaLlamaModel).from_pretrained( |
|
pretrained_model_name_or_path, |
|
*model_args, |
|
config=config, |
|
cache_dir=cache_dir, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
force_download=force_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
use_safetensors=use_safetensors, |
|
**kwargs, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
seqlens_in_batch: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
dpo_forward: bool = False, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
self.freezed_module_patch() |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, position_ids, attention_mask, past_key_values, labels, images |
|
) |
|
|
|
support_packing = ( |
|
"seqlens_in_batch" in inspect.signature(self.llm.forward).parameters |
|
) |
|
|
|
if self.training and support_packing and not dpo_forward: |
|
( |
|
_, |
|
new_position_ids, |
|
new_attention_mask, |
|
_, |
|
new_inputs_embeds, |
|
new_labels, |
|
sorted_seqlens_in_batch, |
|
) = self.repack_multimodal_data( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
) |
|
if sorted_seqlens_in_batch is None: |
|
sorted_seqlens_in_batch = seqlens_in_batch |
|
new_input_ids = None |
|
past_key_values = None |
|
else: |
|
new_attention_mask = attention_mask |
|
new_position_ids = position_ids |
|
new_inputs_embeds = inputs_embeds |
|
new_labels = labels |
|
sorted_seqlens_in_batch = attention_mask.sum(-1).int() |
|
new_input_ids = input_ids |
|
|
|
if support_packing: |
|
outputs = self.llm.forward( |
|
input_ids=new_input_ids, |
|
attention_mask=new_attention_mask, |
|
position_ids=new_position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=new_inputs_embeds, |
|
labels=new_labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
seqlens_in_batch=sorted_seqlens_in_batch, |
|
) |
|
else: |
|
outputs = self.llm.forward( |
|
input_ids=new_input_ids, |
|
attention_mask=new_attention_mask, |
|
position_ids=new_position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=new_inputs_embeds, |
|
labels=new_labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if dpo_forward: |
|
return outputs.logits, new_labels |
|
return outputs |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
**generation_kwargs, |
|
): |
|
if images is not None: |
|
( |
|
_, |
|
_, |
|
attention_mask, |
|
_, |
|
inputs_embeds, |
|
_, |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, None, attention_mask, None, None, images |
|
) |
|
else: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
inputs_embeds = inputs_embeds.to(self.dtype) |
|
|
|
outputs = self.llm.generate( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
**generation_kwargs, |
|
) |
|
return outputs |
|
|
|
|
|
|
|
|
|
|