File size: 4,244 Bytes
ffe7e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
library_name: transformers
base_model: meta-llama/Llama-3.2-3B
tags:
- generated_from_trainer
model-index:
- name: 22b-fft-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Llama-3.2-3B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
# - path: anthracite-core/c2_logs_32k_mistral-v3_v1.2
# type: sharegpt
# conversation: chatml
- path: ./datasets/c2_deduped_32k_mistral-v3_tok_deanon_dsclean_1.2.jsonl
type: sharegpt
conversation: chatml
# - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
# type: sharegpt
# conversation: chatml
- path: ./datasets/opus-instruct-22k-no_refusals.jsonl
type: sharegpt
conversation: chatml
# - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
# type: sharegpt
# conversation: chatml
- path: ./datasets/kalo-3k-filtered.jsonl
type: sharegpt
conversation: chatml
# - path: anthracite-org/nopm_claude_writing_fixed
# type: sharegpt
# conversation: chatml
- path: ./datasets/claudewritingNopm.jsonl
type: sharegpt
conversation: chatml
# - path: anthracite-org/kalo_opus_misc_240827
# type: sharegpt
# conversation: chatml
- path: ./datasets/kalo_opus_misc_240827.jsonl
type: sharegpt
conversation: chatml
# - path: anthracite-org/kalo_misc_part2
# type: sharegpt
# conversation: chatml
- path: ./datasets/kalo_misc_part2.jsonl
type: sharegpt
conversation: chatml
# - path: NewEden/Claude-Instruct-5K
# type: sharegpt
# conversation: chatml
- path: ./datasets/5k.jsonl
type: sharegpt
conversation: chatml
#chat_template: chatml
shuffle_merged_datasets: true
#default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: ./magnum-22b-data
val_set_size: 0.0
output_dir: ./22b-fft-out
sequence_len: 16000
sample_packing: true
pad_to_sequence_len: true
wandb_project: 3bmagnum
wandb_entity:
wandb_watch:
wandb_name: 3magnum
wandb_log_model:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
```
</details><br>
# 22b-fft-out
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|