File size: 1,117 Bytes
6566cee
 
 
e0f83a4
6566cee
 
46ed7eb
6566cee
 
 
 
 
5ee8ed9
f9a0290
e234444
46ed7eb
6566cee
742a64f
6566cee
 
 
 
 
 
 
ea8887e
6566cee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# testing changes

# get dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16


class EndpointHandler:
    def __init__(self, path=""):
        # load the model
        tokenizer = AutoTokenizer.from_pretrained(path) 
        model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
        model.to('cuda:0')
    
        # create inference pipeline
        self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device='cuda:0')

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            prediction = self.pipeline(inputs, max_new_tokens=2048, **parameters)
        else:
            prediction = self.pipeline(inputs)
        # postprocess the prediction
        return prediction