--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_vegetables_clf results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1 language: - en pipeline_tag: image-classification --- # vit-base-patch16-224-in21k_vegetables_clf This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). It achieves the following results on the evaluation set: - Loss: 0.0014 - Accuracy: 1.0 - F1 - Weighted: 1.0 - Micro: 1.0 - Macro: 1.0 - Recall - Weighted: 1.0 - Micro: 1.0 - Macro: 1.0 - Precision - Weighted: 1.0 - Micro: 1.0 - Macro: 1.0 ## Model description This is a multiclass image classification model of different vegetables. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Vegetable%20Image%20Classification/Vegetables_ViT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/misrakahmed/vegetable-image-dataset _Sample Images From Dataset:_ ![Sample Images](https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Vegetable%20Image%20Classification/Images/Sample%20Images.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.2079 | 1.0 | 938 | 0.0193 | 0.996 | 0.9960 | 0.996 | 0.9960 | 0.996 | 0.996 | 0.9960 | 0.9960 | 0.996 | 0.9960 | | 0.0154 | 2.0 | 1876 | 0.0068 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | | 0.0018 | 3.0 | 2814 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1