DunnBC22 commited on
Commit
981a329
·
1 Parent(s): db505aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -6
README.md CHANGED
@@ -8,11 +8,17 @@ tags:
8
  model-index:
9
  - name: mit-b0-CMP_semantic_seg_with_mps_v2
10
  results: []
 
 
 
 
 
11
  ---
12
 
13
  # mit-b0-CMP_semantic_seg_with_mps_v2
14
 
15
- This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
 
16
  It achieves the following results on the evaluation set:
17
  - Loss: 1.0863
18
  - Mean Iou: 0.4097
@@ -47,15 +53,15 @@ It achieves the following results on the evaluation set:
47
 
48
  ## Model description
49
 
50
- More information needed
51
 
52
  ## Intended uses & limitations
53
 
54
- More information needed
55
 
56
  ## Training and evaluation data
57
 
58
- More information needed
59
 
60
  ## Training procedure
61
 
@@ -100,7 +106,7 @@ The following hyperparameters were used during training:
100
  | 0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 | 0.7277 | 0.7718 | 0.7095 | 0.4789 | 0.5401 | 0.5080 | 0.6040 | 0.5314 | 0.4573 | 0.5414 | 0.2853 | 0.5062 |
101
  | 0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 | 0.6781 | 0.7703 | 0.7305 | 0.5102 | 0.5954 | 0.5311 | 0.5960 | 0.5286 | 0.4647 | 0.5861 | 0.2676 | 0.5242 |
102
  | 0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 | 0.6603 | 0.7989 | 0.7349 | 0.4689 | 0.5677 | 0.4620 | 0.6111 | 0.5258 | 0.4556 | 0.5889 | 0.2110 | 0.4530 |
103
- | 0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922
104
  | 0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 | 0.7218 | 0.7735 | 0.7273 | 0.4297 | 0.6001 | 0.5321
105
  | 0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 | 0.7054 | 0.7948 | 0.7009 | 0.4552 | 0.5413 | 0.5357 | 0.5421 | 0.5250 | 0.4701 | 0.5949 | 0.3048 | 0.4213 |
106
  | 0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 | 0.6744 | 0.8004 | 0.7289 | 0.4421 | 0.5410 | 0.5409 | 0.5822 | 0.5334 | 0.4790 | 0.5028 | 0.2177 | 0.4910 |
@@ -132,4 +138,4 @@ The following hyperparameters were used during training:
132
  - Transformers 4.26.1
133
  - Pytorch 1.12.1
134
  - Datasets 2.9.0
135
- - Tokenizers 0.12.1
 
8
  model-index:
9
  - name: mit-b0-CMP_semantic_seg_with_mps_v2
10
  results: []
11
+ datasets:
12
+ - Xpitfire/cmp_facade
13
+ metrics:
14
+ - mean_iou
15
+ pipeline_tag: image-segmentation
16
  ---
17
 
18
  # mit-b0-CMP_semantic_seg_with_mps_v2
19
 
20
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0).
21
+
22
  It achieves the following results on the evaluation set:
23
  - Loss: 1.0863
24
  - Mean Iou: 0.4097
 
53
 
54
  ## Model description
55
 
56
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Segmentation/Trained%2C%20But%20to%20My%20Standard/Center%20for%20Machine%20Perception/Version%202/Center%20for%20Machine%20Perception%20-%20semantic_segmentation_v2.ipynb
57
 
58
  ## Intended uses & limitations
59
 
60
+ This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to use it, but remember that it is at your own risk/peril.
61
 
62
  ## Training and evaluation data
63
 
64
+ Dataset Source: https://huggingface.co/datasets/Xpitfire/cmp_facade
65
 
66
  ## Training procedure
67
 
 
106
  | 0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 | 0.7277 | 0.7718 | 0.7095 | 0.4789 | 0.5401 | 0.5080 | 0.6040 | 0.5314 | 0.4573 | 0.5414 | 0.2853 | 0.5062 |
107
  | 0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 | 0.6781 | 0.7703 | 0.7305 | 0.5102 | 0.5954 | 0.5311 | 0.5960 | 0.5286 | 0.4647 | 0.5861 | 0.2676 | 0.5242 |
108
  | 0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 | 0.6603 | 0.7989 | 0.7349 | 0.4689 | 0.5677 | 0.4620 | 0.6111 | 0.5258 | 0.4556 | 0.5889 | 0.2110 | 0.4530 |
109
+ | 0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922 |
110
  | 0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 | 0.7218 | 0.7735 | 0.7273 | 0.4297 | 0.6001 | 0.5321
111
  | 0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 | 0.7054 | 0.7948 | 0.7009 | 0.4552 | 0.5413 | 0.5357 | 0.5421 | 0.5250 | 0.4701 | 0.5949 | 0.3048 | 0.4213 |
112
  | 0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 | 0.6744 | 0.8004 | 0.7289 | 0.4421 | 0.5410 | 0.5409 | 0.5822 | 0.5334 | 0.4790 | 0.5028 | 0.2177 | 0.4910 |
 
138
  - Transformers 4.26.1
139
  - Pytorch 1.12.1
140
  - Datasets 2.9.0
141
+ - Tokenizers 0.12.1