Update README.md
Browse files
README.md
CHANGED
@@ -8,11 +8,17 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: mit-b0-CMP_semantic_seg_with_mps_v2
|
10 |
results: []
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# mit-b0-CMP_semantic_seg_with_mps_v2
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0)
|
|
|
16 |
It achieves the following results on the evaluation set:
|
17 |
- Loss: 1.0863
|
18 |
- Mean Iou: 0.4097
|
@@ -47,15 +53,15 @@ It achieves the following results on the evaluation set:
|
|
47 |
|
48 |
## Model description
|
49 |
|
50 |
-
|
51 |
|
52 |
## Intended uses & limitations
|
53 |
|
54 |
-
|
55 |
|
56 |
## Training and evaluation data
|
57 |
|
58 |
-
|
59 |
|
60 |
## Training procedure
|
61 |
|
@@ -100,7 +106,7 @@ The following hyperparameters were used during training:
|
|
100 |
| 0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 | 0.7277 | 0.7718 | 0.7095 | 0.4789 | 0.5401 | 0.5080 | 0.6040 | 0.5314 | 0.4573 | 0.5414 | 0.2853 | 0.5062 |
|
101 |
| 0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 | 0.6781 | 0.7703 | 0.7305 | 0.5102 | 0.5954 | 0.5311 | 0.5960 | 0.5286 | 0.4647 | 0.5861 | 0.2676 | 0.5242 |
|
102 |
| 0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 | 0.6603 | 0.7989 | 0.7349 | 0.4689 | 0.5677 | 0.4620 | 0.6111 | 0.5258 | 0.4556 | 0.5889 | 0.2110 | 0.4530 |
|
103 |
-
| 0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922
|
104 |
| 0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 | 0.7218 | 0.7735 | 0.7273 | 0.4297 | 0.6001 | 0.5321
|
105 |
| 0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 | 0.7054 | 0.7948 | 0.7009 | 0.4552 | 0.5413 | 0.5357 | 0.5421 | 0.5250 | 0.4701 | 0.5949 | 0.3048 | 0.4213 |
|
106 |
| 0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 | 0.6744 | 0.8004 | 0.7289 | 0.4421 | 0.5410 | 0.5409 | 0.5822 | 0.5334 | 0.4790 | 0.5028 | 0.2177 | 0.4910 |
|
@@ -132,4 +138,4 @@ The following hyperparameters were used during training:
|
|
132 |
- Transformers 4.26.1
|
133 |
- Pytorch 1.12.1
|
134 |
- Datasets 2.9.0
|
135 |
-
- Tokenizers 0.12.1
|
|
|
8 |
model-index:
|
9 |
- name: mit-b0-CMP_semantic_seg_with_mps_v2
|
10 |
results: []
|
11 |
+
datasets:
|
12 |
+
- Xpitfire/cmp_facade
|
13 |
+
metrics:
|
14 |
+
- mean_iou
|
15 |
+
pipeline_tag: image-segmentation
|
16 |
---
|
17 |
|
18 |
# mit-b0-CMP_semantic_seg_with_mps_v2
|
19 |
|
20 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0).
|
21 |
+
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 1.0863
|
24 |
- Mean Iou: 0.4097
|
|
|
53 |
|
54 |
## Model description
|
55 |
|
56 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Segmentation/Trained%2C%20But%20to%20My%20Standard/Center%20for%20Machine%20Perception/Version%202/Center%20for%20Machine%20Perception%20-%20semantic_segmentation_v2.ipynb
|
57 |
|
58 |
## Intended uses & limitations
|
59 |
|
60 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to use it, but remember that it is at your own risk/peril.
|
61 |
|
62 |
## Training and evaluation data
|
63 |
|
64 |
+
Dataset Source: https://huggingface.co/datasets/Xpitfire/cmp_facade
|
65 |
|
66 |
## Training procedure
|
67 |
|
|
|
106 |
| 0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 | 0.7277 | 0.7718 | 0.7095 | 0.4789 | 0.5401 | 0.5080 | 0.6040 | 0.5314 | 0.4573 | 0.5414 | 0.2853 | 0.5062 |
|
107 |
| 0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 | 0.6781 | 0.7703 | 0.7305 | 0.5102 | 0.5954 | 0.5311 | 0.5960 | 0.5286 | 0.4647 | 0.5861 | 0.2676 | 0.5242 |
|
108 |
| 0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 | 0.6603 | 0.7989 | 0.7349 | 0.4689 | 0.5677 | 0.4620 | 0.6111 | 0.5258 | 0.4556 | 0.5889 | 0.2110 | 0.4530 |
|
109 |
+
| 0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922 |
|
110 |
| 0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 | 0.7218 | 0.7735 | 0.7273 | 0.4297 | 0.6001 | 0.5321
|
111 |
| 0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 | 0.7054 | 0.7948 | 0.7009 | 0.4552 | 0.5413 | 0.5357 | 0.5421 | 0.5250 | 0.4701 | 0.5949 | 0.3048 | 0.4213 |
|
112 |
| 0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 | 0.6744 | 0.8004 | 0.7289 | 0.4421 | 0.5410 | 0.5409 | 0.5822 | 0.5334 | 0.4790 | 0.5028 | 0.2177 | 0.4910 |
|
|
|
138 |
- Transformers 4.26.1
|
139 |
- Pytorch 1.12.1
|
140 |
- Datasets 2.9.0
|
141 |
+
- Tokenizers 0.12.1
|