DunnBC22 commited on
Commit
542cd52
·
1 Parent(s): 7a3dcd8

Updating Information About Dataset & Project

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -6,6 +6,9 @@ datasets:
6
  - imagefolder
7
  metrics:
8
  - accuracy
 
 
 
9
  model-index:
10
  - name: deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
11
  results:
@@ -22,14 +25,15 @@ model-index:
22
  - name: Accuracy
23
  type: accuracy
24
  value: 0.8045685279187818
 
 
 
25
  ---
26
 
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
  # deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
31
 
32
- This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset.
 
33
  It achieves the following results on the evaluation set:
34
  - Loss: 1.8587
35
  - Accuracy: 0.8046
@@ -53,7 +57,11 @@ More information needed
53
 
54
  ## Training and evaluation data
55
 
56
- More information needed
 
 
 
 
57
 
58
  ## Training procedure
59
 
@@ -76,10 +84,9 @@ The following hyperparameters were used during training:
76
  | 1.6561 | 2.0 | 360 | 1.7614 | 0.7944 | 0.7575 | 0.7944 | 0.7633 | 0.7944 | 0.7944 | 0.7896 | 0.8458 | 0.7944 | 0.8582 |
77
  | 0.172 | 3.0 | 540 | 1.8587 | 0.8046 | 0.7749 | 0.8046 | 0.7814 | 0.8046 | 0.8046 | 0.7996 | 0.8567 | 0.8046 | 0.8710 |
78
 
79
-
80
  ### Framework versions
81
 
82
  - Transformers 4.28.1
83
  - Pytorch 2.0.0
84
  - Datasets 2.11.0
85
- - Tokenizers 0.13.3
 
6
  - imagefolder
7
  metrics:
8
  - accuracy
9
+ - f1
10
+ - recall
11
+ - precision
12
  model-index:
13
  - name: deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
14
  results:
 
25
  - name: Accuracy
26
  type: accuracy
27
  value: 0.8045685279187818
28
+ language:
29
+ - en
30
+ pipeline_tag: image-classification
31
  ---
32
 
 
 
 
33
  # deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
34
 
35
+ This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224).
36
+
37
  It achieves the following results on the evaluation set:
38
  - Loss: 1.8587
39
  - Accuracy: 0.8046
 
57
 
58
  ## Training and evaluation data
59
 
60
+ <div>
61
+ <a href="https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri" span="">
62
+ Brain Tumor Image Classification Dataset
63
+ </a>
64
+ </div>
65
 
66
  ## Training procedure
67
 
 
84
  | 1.6561 | 2.0 | 360 | 1.7614 | 0.7944 | 0.7575 | 0.7944 | 0.7633 | 0.7944 | 0.7944 | 0.7896 | 0.8458 | 0.7944 | 0.8582 |
85
  | 0.172 | 3.0 | 540 | 1.8587 | 0.8046 | 0.7749 | 0.8046 | 0.7814 | 0.8046 | 0.8046 | 0.7996 | 0.8567 | 0.8046 | 0.8710 |
86
 
 
87
  ### Framework versions
88
 
89
  - Transformers 4.28.1
90
  - Pytorch 2.0.0
91
  - Datasets 2.11.0
92
+ - Tokenizers 0.13.3