Updating Information About Dataset & Project
Browse files
README.md
CHANGED
@@ -6,6 +6,9 @@ datasets:
|
|
6 |
- imagefolder
|
7 |
metrics:
|
8 |
- accuracy
|
|
|
|
|
|
|
9 |
model-index:
|
10 |
- name: deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
|
11 |
results:
|
@@ -22,14 +25,15 @@ model-index:
|
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
value: 0.8045685279187818
|
|
|
|
|
|
|
25 |
---
|
26 |
|
27 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
-
should probably proofread and complete it, then remove this comment. -->
|
29 |
-
|
30 |
# deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
|
31 |
|
32 |
-
This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224)
|
|
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: 1.8587
|
35 |
- Accuracy: 0.8046
|
@@ -53,7 +57,11 @@ More information needed
|
|
53 |
|
54 |
## Training and evaluation data
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
## Training procedure
|
59 |
|
@@ -76,10 +84,9 @@ The following hyperparameters were used during training:
|
|
76 |
| 1.6561 | 2.0 | 360 | 1.7614 | 0.7944 | 0.7575 | 0.7944 | 0.7633 | 0.7944 | 0.7944 | 0.7896 | 0.8458 | 0.7944 | 0.8582 |
|
77 |
| 0.172 | 3.0 | 540 | 1.8587 | 0.8046 | 0.7749 | 0.8046 | 0.7814 | 0.8046 | 0.8046 | 0.7996 | 0.8567 | 0.8046 | 0.8710 |
|
78 |
|
79 |
-
|
80 |
### Framework versions
|
81 |
|
82 |
- Transformers 4.28.1
|
83 |
- Pytorch 2.0.0
|
84 |
- Datasets 2.11.0
|
85 |
-
- Tokenizers 0.13.3
|
|
|
6 |
- imagefolder
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
+
- f1
|
10 |
+
- recall
|
11 |
+
- precision
|
12 |
model-index:
|
13 |
- name: deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
|
14 |
results:
|
|
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
value: 0.8045685279187818
|
28 |
+
language:
|
29 |
+
- en
|
30 |
+
pipeline_tag: image-classification
|
31 |
---
|
32 |
|
|
|
|
|
|
|
33 |
# deit-base-distilled-patch16-224-Brain_Tumors_Image_Classification
|
34 |
|
35 |
+
This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224).
|
36 |
+
|
37 |
It achieves the following results on the evaluation set:
|
38 |
- Loss: 1.8587
|
39 |
- Accuracy: 0.8046
|
|
|
57 |
|
58 |
## Training and evaluation data
|
59 |
|
60 |
+
<div>
|
61 |
+
<a href="https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri" span="">
|
62 |
+
Brain Tumor Image Classification Dataset
|
63 |
+
</a>
|
64 |
+
</div>
|
65 |
|
66 |
## Training procedure
|
67 |
|
|
|
84 |
| 1.6561 | 2.0 | 360 | 1.7614 | 0.7944 | 0.7575 | 0.7944 | 0.7633 | 0.7944 | 0.7944 | 0.7896 | 0.8458 | 0.7944 | 0.8582 |
|
85 |
| 0.172 | 3.0 | 540 | 1.8587 | 0.8046 | 0.7749 | 0.8046 | 0.7814 | 0.8046 | 0.8046 | 0.7996 | 0.8567 | 0.8046 | 0.8710 |
|
86 |
|
|
|
87 |
### Framework versions
|
88 |
|
89 |
- Transformers 4.28.1
|
90 |
- Pytorch 2.0.0
|
91 |
- Datasets 2.11.0
|
92 |
+
- Tokenizers 0.13.3
|