--- language: - sat license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sat - robust-speech-event - model_for_talk datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sat-final results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sat metrics: - name: Test WER type: wer value: 0.3493975903614458 - name: Test CER type: cer value: 0.13773314203730272 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sat metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- # wav2vec2-large-xls-r-300m-sat-final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8012 - Wer: 0.3815 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset speech-recognition-community-v2/dev_data --config sat --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 170 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 10.6317 | 33.29 | 100 | 2.8629 | 1.0 | | 2.047 | 66.57 | 200 | 0.9516 | 0.5703 | | 0.4475 | 99.86 | 300 | 0.8539 | 0.3896 | | 0.0716 | 133.29 | 400 | 0.8277 | 0.3454 | | 0.047 | 166.57 | 500 | 0.7597 | 0.3655 | | 0.0249 | 199.86 | 600 | 0.8012 | 0.3815 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0